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Abstract. It is a well known fact that encryption schemes cannot hide a plaintext
length when it is unbounded. We thus admit that an approximation of it may leak
and we focus on hiding its precise value. Some standards such as TLS or SSH
offer to do it by applying some pad-then-encrypt techniques. In this study, we
investigate the information leakage when these techniques are used. We define
the notion of padding scheme and its associated security. We show that when a
padding length is uniformly distributed, the scheme is nearly optimal. We also
show that the insecurity degrades linearly with the padding length.

1 Introduction

Although an encryption process makes a plaintext unreadable to adversaries, the
resulting ciphertext may still leak some information. Practically, we can always
distinguish an encrypted SMS message from an encrypted HD video stream.
Namely, the length of a plaintext may give some information away and it can
often be deduced from the ciphertext. For instance, the lengths of a plaintext
and the corresponding ciphertext are identical or differ by a small number of
bits when the encryption is done by a stream or a block cipher. One way of
hiding the plaintext size is to use random padding before the encryption which
appends a padding of random length in {1,2, . . . ,B}. In this work, we investigate
the information leakage when a random padding is used.

Let us consider a symmetric encryption system in which encryption under a
key K is denoted by EncK and decryption is denoted by DecK . In the Shannon
model [10], the plaintext and the key are defined by independent random vari-
ables X and K. Perfect secrecy is defined by the statistical independence of X
and Y =EncK(X). If this property is satisfied, we can easily see that the plaintext
domain must be finite: if y is a possible value for Y , then p = Pr[Y = y] is posi-
tive. For any possible value x for X , we must have Pr[EncK(x) = y] = p due to
perfect secrecy. Since EncK(x) = y implies DecK(y) = x, p≤ Pr[DecK(y) = x].

? The present version corrects a few typos from the published one.



By summing over all possible x’s, we deduce that the number of such x is
bounded by 1

p , which is a finite number.1

This impossibility result extends to weaker security notions. In [3,4], Chor
and Kushilevitz consider α-weak security, given α≥ 1, which states that for all
possible x1, x2, y, we have

1
α

Pr[Y = y|X = x2]≤ Pr[Y = y|X = x1]≤ αPr[Y = y|X = x2]

Perfect secrecy corresponds to the α = 1 case. Encryption over a countably
infinite domain cannot be α-weak secure for any α: if x2 and y are possible
simultaneous values for X and Y , p = 1

α
Pr[Y = y|X = x2] is positive and we

have Pr[Y = y|X = x1]≥ p for all possible x1. So, Pr[DecK(y) = x1]≥ p and the
number of possible plaintexts is bounded by 1

p .
In [9], Phan and Vaudenay consider ε-statistically extended indistinguisha-

bility under one-time encryption (extended IND-OTE game), given ε< 1, which
means

1
2 ∑

y
|Pr[Y = y|X = x1]−Pr[Y = y|X = x2]| ≤ ε

for all possible plaintexts x1 and x2. Again, secure (in this sense) encryption over
an infinite (countable) domain is impossible.

A public-key cryptosystem is nothing but an encryption scheme in which
EncK can be described by using public values. So, the above impossibility re-
sults also apply to public-key cryptography.

A standard security notion for encryption is the IND-CPA security (indis-
tinguishability under chosen plaintext attacks) in which an adversary can make
some chosen plaintext encryptions and tries to get an advantage for distinguish-
ing the encryption of either x1 or x2, two plaintexts of same length selected by
himself. For public-key encryption, the adversary makes the encryption himself
by using the public key so IND-CPA and IND-OTE notions are equivalent. For
symmetric encryption, he must be provided access to an encryption oracle. In
the IND-OTE game, there is no such access so there may be a gap between
IND-CPA and IND-OTE notions. Still, these notions impose that x1 and x2 have
the same length so they offer no guarantee about keeping the plaintext length
secret. We call extended IND-OTE game (E-IND-OTE) the notion where the
restriction that x1 and x2 have the same length is relaxed.

1 Actually, this proof only holds for countable sets. More generally, we should define our prop-
erties with non-discrete probabilities to be able to consider uncountably infinite sets. In theory,
we could achieve perfect secrecy over uncountably infinite sets. However, the encryption al-
gorithm will no longer be polynomially bounded on classical computational models. So, we
only consider countable sets in the present paper. We could probably reopen this case when
considering encryption over a space of quantum states. (See [9] for more discussions.)
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The Phan-Vaudenay result says that if all adversaries in the E-IND-OTE
game have their advantage bounded by a given ε < 1, then the encryption do-
main must be finite. Ideally, we would like to design secure encryption schemes
over an infinite set. Practically, we could live with encryption domains which
are finite but large enough. Indeed, we can assume that the set of bitstrings of
length bounded by a few petabytes is a virtually infinite set. So, we could design
an encryption scheme over this domain with a pretty good security. However, for
efficiency reasons, we would not like that the encryption of a very small plain-
text (say a few kilobytes) would lead to a ciphertext of one petabyte. Therefore,
we should consider encryption schemes which are somehow length-preserving
but also length hiding. To make it possible, we relax the E-IND-OTE security
notion and consider the ∆-IND-OTE game in which the submitted plaintexts
have a length difference bounded by ∆. The IND-OTE (resp. E-IND-OTE) no-
tions correspond to ∆ = 0 (resp. ∆ =+∞).

In the sequel we consider encryption schemes defined by

Enc(x) = Enc0(x‖pad(x))

where Enc0 is a length-preserving IND-OTE-secure scheme and pad is a prob-
abilistic padding scheme. That is, pad generates a postfix-free random string
which can be extracted after decryption. Typically, pad(x) is a random bitstring
whose length N is a random variable. This kind of construction is proposed e.g.
in TLS [6] or SSH [12]. For instance, here is a quote from [6]:

Padding that is added to force the length of the plaintext to be an integral
multiple of the block cipher’s block length. The padding MAY be any
length up to 255 bytes, as long as it results in the TLSCiphertext.length
being an integral multiple of the block length. Lengths longer than nec-
essary might be desirable to frustrate attacks on a protocol that are based
on analysis of the lengths of exchanged messages.

This suggests that we could arbitrarily pad up to B = 32 (resp. B = 16) blocks
of data to hide the exact length of a plaintext, when the block cipher uses blocks
of 64 bits (resp. 128 bits).

More generally, we consider preencryption schemes which are not necessar-
ily of form x‖pad(x). We may consider several assumptions:

– (uniformity) the distribution of the length overhead between x and Enc(x) is
fixed (it does not depend on x)

– (almost length-preserving property) the length overhead is bounded by B

Given B and ∆, our aim is to find the best distribution N to achieve optimal
∆-IND-OTE security.
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Related work. Padding often serves another purpose. Namely, it is used to fill
incomplete blocks to encrypt a plaintext using a block cipher. Our notion of
preencryption scheme is similar to the notion of encoding by Paterson and Wat-
son [8] who consider several practical schemes. They analyze the security of
the pad-then-encrypt scheme in a practical case where the original encryption
scheme is a block cipher in CTR mode. This follows some other work in which
they identified a terrible interaction between the padding scheme and the de-
cryption algorithm in CBC mode [1]. Some other padding schemes leading to
decryption attacks have been identified (see e.g. [2,5,7,11]).

Our results. We first formalize in Section 2 the notion of preencryption scheme
and its associated ∆-IND security notion. We formalize the notion of preen-
cryption by padding (or the pad-then-encrypt technique). When Enc0 is length-
preserving, we show that ∆-IND-security is necessary and sufficient to make
Enc ∆-IND-OTE secure.

Then, we show in Section 3 that there is always an adversary with advan-
tage nearly ∆

B . That is, the insecurity degrades linearly with the padding length
B. This main result happens to have a very simple proof by using a diagonal
argument.

We observe that a padding scheme making padding lengths uniformly dis-
tributed makes the above adversary nearly the best one. So, this preencryption
scheme is nearly optimal.

In Section 4, we further precisely study the optimal padding scheme in the
uniform case for ∆ = 2.

2 Preliminaries

In what follows we consider an alphabet Z. This can be a Boolean alphabet, or
the set of bytes, or a set of blocks. We denote by Z∗ the set of finite sequences
of elements taken from Z. The length of an element x ∈ Z∗ is denoted by |x|. For
x,x′ ∈ Z∗, we denote by x‖x′ the concatenation of x and x′.

In this paper we adopt exact security notions. We can easily translate to
asymptotic security by introducing security parameters in the definition of en-
cryption schemes.

2.1 Encryption Scheme

Definition 1. An encryption scheme is defined by

– a plaintext domain which is a subset of Z∗

– an algorithm to generate a key K
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– a (probabilistic) encryption algorithm Enc taking a key and a plaintext as
input and producing a ciphertext

– a (deterministic) decryption algorithm Dec taking a key and a ciphertext as
input and producing a plaintext

The correctness property of an encryption scheme states that if we generate a
key K by the key generation algorithm, if we take a plaintext x in the plaintext
domain, and if we compute DecK(EncK(x)) then we obtain x with probability 1.

We say that an encryption scheme is B-almost length preserving if

||EncK(x)|− |x|| ≤ B

with probability 1 for all x. It is length-preserving if it is 0-almost length pre-
serving.

We say that an encryption scheme t-fully leaks the plaintext length if there
exists an algorithm f such that for all x in the plaintext domain, f (EncK(x)) =
|x| with probability 1 within a complexity at most t.

For instance, a length-preserving encryption scheme fully leaks the plaintext
length by f (y) = |y|.

For symmetric encryption, the key generation algorithm simply picks a key
in a given key space, following the uniform distribution. For public-key encryp-
tion, the key can be split in a public part and a private part. The encryption
algorithm only use the public part. What follows applies to both cases.

We define the ∆-IND-OTE security notion as follows:

Definition 2. We consider the following game between an adversary A and a
challenger. Firstly, the challenger generates a key K using the key generation
algorithm. In the case of a public key cryptosystem, it reveals the public part
Kp of K to the adversary. The adversary can do some computations and then
submits two plaintexts A(Kp;ρ) = (x0,x1) in the plaintext domain such that

||x0|− |x1|| ≤ ∆

by using some random coins ρ. The challenger flips a fair coin b, computes
Y = EncK(xb) and reveals Y . The adversary can then do some extra computa-
tions and yields a guess A(Kp,Y ;ρ) = b′. The adversary succeeds if b = b′. His
advantage is Pr[b = b′]− 1

2 . A has a complexity bounded by t if for any Kp, Y ,
and ρ, the total running time of A(Kp;ρ) and A(Kp,Y ;ρ) is bounded by t. We
say that the encryption scheme is ∆-IND-OTE(t,ε)-secure if for all adversary
with time complexity limited by t, the advantage is at most ε.
∆-IND-OTE Game:

1: Challenger generates K and discloses its public part Kp
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2: Adversary selects plaintexts x0 and x1 where ||x0|− |x1|| ≤ ∆

3: Challenger flips a coin b, computes EncK(xb) =Y and gives Y to the adver-
sary

4: Adversary guesses b′ and wins if b′ = b

IND-OTE security corresponds to the ∆= 0 case. We also consider E-IND-OTE
security defined by the ∆ =+∞ case.

2.2 Preencryption Schemes

Definition 3. Given two plaintext domains X and X 0, a preencryption scheme
from X to X 0 is a pair of algorithms

– a (probabilistic) algorithm pre such that for all x ∈ X , pre(x) ∈ X 0 with
probability 1

– a (deterministic) algorithm Extract

The correctness property of a preencryption scheme states that for all x ∈ X ,

Extract(pre(x)) = x

with probability 1.
We say that a preencryption scheme is B-almost length preserving if

||pre(x)|− |x|| ≤ B

with probability 1 for all x. We say that a preencryption scheme is length-
increasing if |pre(x)| ≥ |x| with probability 1 for all x. We say that a preen-
cryption scheme is strictly length-increasing if |pre(x)| > |x| with probability 1
for all x.

Definition 4. A preencryption scheme is ∆-IND (t,ε)-secure if for all adversary
A with time complexity limited by t, the advantage in the following game is at
most ε. The advantage is defined as Pr[b = b′]− 1

2 .
∆-IND Game:

1: Adversary selects plaintexts x0 and x1 where ||x0|− |x1|| ≤ ∆

2: Challenger flips a coin b, computes |pre(xb)|= L and gives L to the adver-
sary

3: Adversary guesses b′ and wins if b′ = b
A has a complexity bounded by t if for any L and ρ, the total running time of
A(;ρ) and A(L;ρ) is bounded by t.

Given a set of integers A, x0 and x1, we define a ∆-IND adversary DA(x0,x1)
as the one selecting x0 and x1 then yielding b′ = 1 if and only if L∈ A. We define
AdvA(x0,x1) as the advantage of this adversary.
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Lemma 5. For any x0 and x1 we have

AdvA(x0,x1) =
1
2

Pr[|pre(x1)| ∈ A]− 1
2

Pr[|pre(x0)| ∈ A]

=
1
2 ∑
`∈A

(Pr[|pre(x1)|= `]−Pr[|pre(x0)|= `])

Proof. We have

AdvA(x0,x1) = Pr[b = b′]− 1
2

=
1
2

Pr[b′ = 1|b = 1]+
1
2

Pr[b′ = 0|b = 0]− 1
2

=
1
2

Pr[b′ = 1|b = 1]− 1
2

Pr[b′ = 1|b = 0]

=
1
2

Pr[|pre(x1)| ∈ A]− 1
2

Pr[|pre(x0)| ∈ A]

and the other expression follows by separating the ` ∈ A cases. ut

We define Adv(x0,x1) as the maximal advantage for (computationally un-
bounded) adversaries selecting x0 and x1.

Lemma 6. For any x0 and x1 we have Adv(x0,x1) = AdvA(x0,x1) where

A = {`;Pr[|pre(x1)|= `]> Pr[|pre(x0)|= `]}

Actually, Adv(x0,x1) is the statistical distance between the length of pre(x0) and
the length of pre(x1).

Proof. Since we consider unbounded adversaries, an optimal one using x0 and
x1 can be assumed to be of form DA′(x0,x1) without loss of generality. By
Lemma 5 we clearly have AdvA′(x0,x1) ≤ AdvA(x0,x1). So, A′ = A maximizes
AdvA′(x0,x1) and we obtain Adv(x0,x1) = AdvA(x0,x1). ut

Given an encryption scheme

C0 = (X 0,Gen0,Enc0,Dec0)

and a preencryption scheme P = (pre,Extract) from X to X 0 we define the
encryption scheme

C = (X ,Gen,Enc,Dec)

by Gen= Gen0,
EncK(x) = Enc0

K(pre(x))
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and
DecK(y) = Extract(Dec0

K(y))

Clearly, this defines an encryption scheme. If the preencryption scheme is B-
almost length-preserving and the encryption scheme C0 is length-preserving,
then the encryption scheme C is B-almost length preserving.

Theorem 7. We assume there exist a constant tS and a sampling algorithm
S(1L) to pick a random element of X 0 of length L with complexity at most tS for
any L∈ {|x|;x∈X 0}. There exists a (small) constant c such that for any C, C0, t,
tP, if C0 is a IND-OTE(t+ tS+ tP+c,ε0)-secure encryption scheme and if P is a
∆-IND(t+tS+tP+c,ε1)-secure preencryption scheme and pre can be computed
within a complexity bounded by tP, then C is a ∆-IND-OTE(t,2ε0 + ε1)-secure
encryption scheme.

When C0 t0-fully leaks the plaintext length, if C is ∆-IND-OTE(t+ t0+c,ε)-
secure then P is ∆-IND(t,ε)-secure.

So, for an IND-OTE-secure encryption C0 which fully leaks the plaintext length,
the ∆-IND security of P is necessary and sufficient to have C ∆-IND-OTE-
secure.

Proof. Let A be a ∆-IND-OTE adversary for C which has a time complexity
bounded by t. We want to prove that its advantage is less than 2ε0 + ε1.

We define the following adversary A ′.
1: receive (public) key material
2: simulate A to get x0 and x1
3: flip a fair coin b
4: compute x′0 = pre(xb)
5: pick a random x′1 = S(1|x

′
0|) in X 0

6: submit x′0 and x′1 and receive Y
7: continue the simulation of A with Y to get b′

8: output 1 if b = b′ and 0 otherwise
The complexity of this adversary is bounded by t + tS + tP + c where c is the
small overhead complexity beside the simulation of A , the sampling of S, and
the computation of pre(xb).

Let Γ be the experiment corresponding to the IND-OTE game of A ′ against
C0 when x′0 is selected by the challenger. So, Γ yields 1 if and only if A yields
b′ = b on input Y = Enc(pre(x0)). That is, the advantage of A is Pr[Γ→ 1]− 1

2 .
Therefore, to bound the advantage of A , we just need to prove that Pr[Γ→ 1]≤
1
2 +2ε0 + ε1.

Let Γ′ be the experiment corresponding to the IND-OTE game of A ′ against
C0 when x′1 is selected by the challenger. A ′ is an IND-OTE adversary for C0
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with advantage 1
2(Pr[Γ′→ 1]−Pr[Γ→ 1]). Due to the IND-OTE-security of C0,

we have |Pr[Γ→ 1]−Pr[Γ′→ 1]| ≤ 2ε0.
Clearly, Γ′ is equivalent to the following:

1: generate a key
2: simulate A to get x0 and x1
3: flip a fair coin b
4: compute L = |pre(xb)|
5: pick X = S(1L)
6: compute Y = Enc(X)
7: continue the simulation of A with Y to get b′

8: output 1 if b = b′ and 0 otherwise
This defines a ∆-IND adversary for P. So, Pr[Γ′→ 1]≤ 1

2 + ε1.
We deduce that Pr[Γ→ 1]≤ 1

2 +2ε0 + ε1.
For the second part of the theorem, we now let A be a ∆-IND adversary for

P of complexity bounded by t and we want to bound its advantage. Since C0

fully leaks the plaintext length, there is a function f to compute the plaintext
length from the ciphertext. We define the following adversary:

1: get key material from a challenger
2: simulate A to get x0 and x1
3: submit x0 and x1 to the challenger and get ciphertext Y
4: compute L = f (Y )
5: continue the simulation of A with L to get b′

6: yield b′

Clearly, this is a ∆-IND-OTE adversary for C whose advantage is exactly the
advantage of A . Assume that its complexity is bounded by t + t0 + c. Since C is
∆-IND-OTE (t + t0 + c,ε)-secure, this advantage is bounded by ε. ut

2.3 Pad-then-Encrypt Scheme

Definition 8. A C subset of Z∗ is postfix-free if

∀s ∈ Z∗ ∀x,y ∈C s‖x = y =⇒ x = y

We observe that if the empty string belongs to C then no other string is in C.
Furthermore, there exists a function Extract such that for all s ∈ X and for all
x ∈C, we have

Extract(s‖x) = s

with probability 1. In what follows we consider a postfix-free set such that this
function can be efficiently implemented.
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Definition 9. Given X 0 ⊆ Z∗ and a postfix-free set C, a C-padding scheme on
X 0 is a probabilistic algorithm taking an element x of X 0 as input and producing
an element pad(x) of C as an output. We say that the padding scheme is uniform
if the distribution of pad(x) does not depend on x.

A padding scheme defines the preencryption scheme

pre(x) = x‖pad(x)

We note that preencryption schemes made out from a padding scheme are all
length-increasing. Except in the constant 0-padding case, they are even strictly
length increasing.

Example 10. We consider the padding scheme defined by the parameter B as
follows: given x, we simply pick a sequence 100 · · ·0 of length N which is
uniformly distributed in {1, . . . ,B}. This padding scheme is B-almost length
preserving, strictly length-increasing, and uniform. By Lemma 5 and 6, we ob-
tain that Adv(x0,x1) =

||x1|−|x0||
2B . So, this preencryption scheme is ∆-IND

(
t, ∆

2B

)
-

secure for all ∆ and any t.

In what follows we show that this scheme is nearly optimal.
To make a pad-then-encrypt construction secure with ∆ large, we shall find a

secure padding scheme for this ∆. A trivial solution consists of making sure that
x‖pad(x) has a constant length no matter the plaintext x. To make it possible,
this length must be at least the maximal length of a plaintext. This solution is
clearly impractical. We shall rather concentrate on ∆ small. So, we do not fully
hide the length of plaintexts but rather their exact value.

3 Maximal Security of the Pad-then-Encrypt Scheme

In this section we consider lower bounds for the best advantage of an adversary
against a preencryption scheme. We consider the case where the plaintext space
is large and dense enough so that we can make sequences of plaintexts such that
the length of two consecutive ones differ by ∆.

Definition 11. We say that a sequence (x0, . . . ,xn) of Z∗ elements is a ∆-chain
if for every i = 0, . . . ,n−1, we have |xi+1|− |xi|= ∆. We say that this sequence
represents a length ` if |x0| ≤ ` ≤ |xn|. We say that a subset X of Z∗ is ∆-dense
if for any x,y ∈ X , there exists a ∆-chain in X which represents |x| and |y|. We
say that X is B-large if there exists x,y ∈ X such that |x|− |y| ≥ B.
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Theorem 12. Let P be a B-almost length-preserving preencryption scheme and
∆ be an integer. We assume that the input domain of P is ∆-dense and (2B+∆)-
large. Then, there exists an adversary in the ∆-IND game with advantage at
least 1/

(
2
⌊2B

∆

⌋
+2

)
.

If P is length-increasing and B-almost length-preserving over a domain
which is ∆-dense and (B+ ∆)-large, then there exists an adversary with ad-
vantage at least 1/

(
2
⌊B

∆

⌋
+2

)
.

Proof. Let n=
⌊ cB

∆

⌋
+1 with c= 1 for length-increasing preencryption schemes

and c = 2 otherwise. Since the domain is (cB+∆)-large and ∆-dense, we can
construct a ∆-chain of n+1 elements x0,x1, . . . ,xn. We have |xi+1|= |xi|+∆ for
i = 0,1, . . . ,n−1. So, |xi|= |x0|+ i∆ for i = 0,1, . . . ,n. Let

si = Pr[|pre(xi)| ≤ B+ |x0|]

which is the probability that the preencrypted version of xi has an overhead
length bounded by B+ |x0|− |xi| = B− i∆. Clearly, s0 = 1 since P is B-almost
length preserving, and sn = 0 since B−n∆ < (1− c)B.

So, ∑
n−1
i=0 (si− si+1) = 1. Hence, there must exist some i such that si− si+1 ≥

1
n . Let A be the set of all integers up to B+ |x0|. We have Pr[|pre(xi)| ∈ A] = si.
We deduce that AdvA(xi,xi+1) ≥ 1

2n : there is an adversary with an advantage
larger than 1

2n . ut

Remark 13. Example 10 shows a simple B-almost length-preserving scheme
which is ∆-IND

(
t, ∆

2B

)
-secure. So, the optimal security which is achievable is

between ∆

2B and 1
2d B

∆e
. In particular, when ∆ divides B, the scheme in Example 10

is optimal.

Theorem 12 can be generalized to preencryption schemes which are un-
bounded, but with finite expected overhead length. In practice, we would like to
have a guarantee that a preencryption overhead is not too long on average, so
this is a pretty reasonable assumption.

Theorem 14. Let P be a length-increasing preencryption scheme and ∆ be an
integer. We assume that the input domain of P is ∆-dense and (2B)-large. We
assume that for all x, we have |E(|pre(x)|)−|x|| ≤ B. There exists an adversary
in the ∆-IND game with advantage at least 1/

(
4
⌈2B

∆

⌉)
.

Proof. We apply the same proof method as in Theorem 12. We define n =
⌈

αB
∆

⌉
and

si = Pr[|pre(xi)|< αB+ |x0|] = Pr[|pre(xi)|− |xi|< αB− i∆]

for α such as the scheme is (αB)-large. We have s0 ≥ 1− 1
α

since E(|pre(x0)|)−
|x0| ≤ B and sn = 0 since the scheme is length-increasing. So, there is some i
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leading us to AdvA(xi,xi+1)≥ 1
2n

(
1− 1

α

)
. We can just take α = 2 and conclude.

ut

4 Uniform Padding Schemes

In this section, we consider a uniform padding scheme. We let N be a random
variable following the distribution of |pad(x)|. We assume that Pr[N = 0] = 0:
the padding scheme is strictly length-increasing. Since the scheme is uniform,
the distribution does not depend on x. In notations, we further replace plaintexts
x0 and x1 by their lengths a and b where b≥ a without loss of generality.

Lemma 15. We have Pr[N ≤ b− a] ≤ 2 ·Adv(a,b) and equality holds if and
only if Pr[N = x+b−a]≤ Pr[N = x] for all x > 0.

Proof. Let ε = Adv(a,b). Due to Lemma 5 and 6, we have

ε =
1
2 ∑
`:Pr[N=`−a]≥Pr[N=`−b]

(Pr[N = `−a]−Pr[N = `−b])

≥ 1
2 ∑
`:`≤b

Pr[N = `−a]

=
1
2

Pr[N ≤ b−a]

and equality holds if and only if Pr[N = x+b−a]≤ Pr[N = x] for all x > 0. ut

Theorem 16. Consider a uniform strictly length-increasing padding scheme
with the above notations. We assume that it is B-almost length-preserving. If
b−a = ∆ and B is divisible by ∆, then Adv(a,b)≥ ∆

2B and equality holds if and
only if Pr[N ≤ b−a] = ∆

B and Pr[N = i] is periodic over [1, . . . ,B] with period ∆.

Proof. Let ε = Adv(a,b).

Case 1: Assume Pr[N ≤ ∆]> ∆

B . Due to Lemma 15, we have ε≥ 1
2 Pr[N ≤ ∆]>

∆

2B .

Case 2: Assume Pr[N ≤ ∆] = ∆

B . If there exists an integer j > a+∆ with Pr[N =
j−a]> Pr[N = j−b], then A = {a+1,a+2, . . . ,a+∆, j} makes

ε≥ AdvA(a,b) =
1
2
(Pr[N ≤ ∆]+Pr[N = j−a]−Pr[N = j−b])>

∆

2B
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If no such j exists, then we have Pr[N = x+∆] ≤ Pr[N = x] for all x > 0. By
Lemma 15, we obtain ε = ∆

2B . Furthermore, we get Pr[ j∆ < N ≤ ( j+1)∆]≤ ∆

B
for all j ≥ 0. Therefore, we have

1 =
B

∑
i=1

Pr[N = i]≤
⌈

B
∆

⌉
· ∆

B

Since B is divisible by ∆, this inequality is in fact an equality. Thus, we cannot
have Pr[N = x+∆]< Pr[N = x] for any x. Hence, Pr[N = x+∆] = Pr[N = x] for
all x ∈ [1,B−∆], and Pr[N = i] becomes periodic over [1, . . . ,B] with period ∆.

Case 3: Assume Pr[N ≤ ∆]< ∆

B . Then ∆

B−Pr[N ≤ ∆] = δ for some δ > 0. Since

d B
∆e−1

∑
j=0

Pr[ j∆ < N ≤ ( j+1)∆] = 1

Pr[0 < N ≤ ∆] = ∆

B −δ, and ∆ divides B, there must exist an integer j > 0 such
that Pr[ j∆ < N ≤ ( j+1)∆]> ∆

B . Thus, if we set A = {a+1,a+2, . . . ,a+( j+
1)∆}, we obtain

ε≥ AdvA(a,b) =
1
2
(Pr[N ≤ ( j+1)∆]−Pr[N ≤ j∆])>

∆

2B

Thus in all cases ε≥ ∆

2B and equality holds if and only if Pr[N ≤ ∆] = ∆

B and
Pr[N = i] is periodic over [1, . . . ,B] with period ∆. ut

The following example shows that when B is not divisible by ∆, then ε can
be less than ∆

B .

Example 17. Let b−a = ∆ = 2 and B = 5. We define N as follows:

Pr[N = 1] = Pr[N = 3] = Pr[N = 5] = 0.22 Pr[N = 2] = Pr[N = 4] = 0.17

Thus, the best advantage with a length difference of ∆ = 2 is ε2 =
1
2(Pr[N = 1]+

Pr[N = 2]) = 0.195 which is less than 1
5 . However, for ∆ = 1, the best advantage

is ε1 =
1
2 (Pr[N = 1]+Pr[N = 3]+Pr[N = 5]−Pr[N = 2]−Pr[N = 4]) = 0.16.

For ∆ = 1, B is divisible by ∆ so Example 10 gives an optimal padding
scheme. For ∆ = 2 and B even, it is the same. For ∆ = 2 and B odd, the optimal
case is characterized as follows.

Theorem 18. Consider a uniform strictly length-increasing padding scheme
with the above notations. We assume that it is B-almost length-preserving. If
B is odd, then

max
b−a≤2

Adv(a,b)≥ B
B2 +1

13



and an equality can be reached by a distribution taking alternate values on
every length.

Proof. We first note that B
B2+1 < 1

B so we must find a better distribution than the
uniform one from Example 10. We further note that 1

2b B
2 c+2

= 1
B+1 ≤

B
B2+1 so

the bound to be proven is consistent with the one from Theorem 12. Let

ε = max
b−a≤2

Adv(a,b)

ε1 = max
b−a=1

Adv(a,b)

ε2 = max
b−a=2

Adv(a,b)

We have ε = max(ε1,ε2).
We let α = B−1

B(B2+1) , β = B+1
B(B2+1) . We note that 2

B +α−β = 2B
B2+1 . Further-

more, B+1
2 α− B−1

2 β = 0. Let N0 be a random variable defined by the distribution
Pr[N0 = i] = 1

B +α for i odd and Pr[N0 = i] = 1
B −β for i even. That is, the dis-

tribution of N0 takes alternate values on every length. For N = N0, by using
Lemma 5 and Lemma 6, we obtain ε1 =

1
2

( 1
B +α+ B−1

2 (α+β)
)
= B

B2+1 with
the optimal set A = {a+1,a+3, . . . ,a+B} and ε2 =

1
2

( 2
B +α−β

)
= B

B2+1 with
the optimal set A= {a+1,a+2}. So, ε= B

B2+1 . We now want to prove that there
is no distribution for N achieving a lower ε.

Let us assume that there is some 0 ≤ i < B− 1 such that Pr[N ∈ {i+ 1, i+
2}] > Pr[N0 ∈ {i+ 1, i+ 2}] = 2B

B2+1 . We take A = {a+ 1,a+ 2, . . . ,a+ i+ 2}
and we obtain

ε≥ AdvA(a,a+2) =
1
2
(Pr[N ≤ i+2]−Pr[N ≤ i])>

B
B2 +1

which is not better than our above distribution. Hence, we now assume that
Pr[N ∈ {i+1, i+2}]≤ Pr[N0 ∈ {i+1, i+2}] for i = 0, . . . ,B−2.

Let i be an odd integer. Since Pr[N ∈ {u,u+ 1}] ≤ Pr[N0 ∈ {u,u+ 1}] for
u = 1,3, . . . , i−2, i+1, . . . ,B−3,B−1, by summing all inequalities, we obtain
Pr[N 6= i]≤ Pr[N0 6= i]. So,

Pr[N = i] = 1−Pr[N 6= i]≥ 1−Pr[N0 6= i] = Pr[N0 = i]

for any odd i. Thus, Pr[N odd]≥ Pr[N0 odd].
Let now i be even. We have

Pr[N = i] = Pr[N ∈ {i, i+1}]−Pr[N = i+1]

≤ Pr[N0 ∈ {i, i+1}]−Pr[N0 = i+1]

= Pr[N0 = i]

14



Thus, Pr[N even]≤ Pr[N0 even].
Finally, let A = {a+1,a+3, . . . ,B}. We have

ε≥ AdvA(a,a+1) =
1
2
(Pr[N odd]−Pr[N even])

≥ 1
2
(Pr[N0 odd]−Pr[N0 even])

=
B

B2 +1

Therefore, we cannot have ε lower than B
B2+1 . ut

Theorem 18 shows that when b− a ≤ 2 and B is odd, the lower bound
1

2b B
2 c+2

= 1
B+1 for the maximum advantage is not achievable. Results of The-

orem 12 and 18 for the case when ∆ = 2 and B is odd are provided in Table 1
for small values of B.

5 Conclusion

We have shown that a padding scheme adding strings with uniformly distributed
length is nearly optimal and that its security is roughly ∆

2B . The optimal scheme
can be slightly better but still close to this bound. This shows that the price to
pay for making ε-indistinguishable two plaintexts with a single bit of length
difference (i.e. 1-IND-OTE(t,ε)-security) is to append a padding of length ε−1

2 ,
which is impractical for the usual security levels we target for encryption (e.g.
ε = 2−80).
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