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Abstract—Known attacks on the elliptic curve discrete loga-
rithm problem introduce constraints on elliptic curve parameters.
A common cryptographic practice is to select an elliptic curve
randomly, and keep it if its group order satisfies these constraints.
But this process assumes that elliptic curves over the same finite
field with the same number of points have the same difficulty
of the discrete logarithm problem. It is shown in [14] that
this assumption is true for almost all elliptic curves. Orders in
imaginary quadratic fields [4, Section 7] play an important role
in this result because the endomorphism ring of an ordinary
curve is isomorphic to an order in an imaginary quadratic field.

The same cryptographic practice is valid for hyperelliptic
curves but the algorithms for calculating the number of points on
these curves are not practical when the underlying finite field is
large. However, [11] shows that this computation can be practical
for special curves having real multiplication. Yet, it is an open
problem if the discrete logarithm problem is equally hard for
all hyperelliptic curves over the same finite field with the same
number of points. We propose to study this problem for curves
of genus 2.
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I. INTRODUCTION

The difficulty of the discrete logarithm problem (DLP)
depends on the group on which the problem is defined.
Public key cryptosystems based on the elliptic curve discrete
logarithm problem [15], [22] is of critical importance in cryp-
tography because there is no known subexponential algorithm
to solve this problem in the group under addition of points of
an elliptic curve E defined over a finite field Fq .

Definition 1: Let E be an elliptic curve over a finite field
Fq . Let N be the order of the group E(Fq) and let P ∈ E(Fq).
Given r = ord(P ) and Q ∈ 〈P 〉, finding the unique integer
m ∈ [0, . . . , r − 1] such that Q = [m]P is called the elliptic
curve discrete logarithm problem (ECDLP).

Known attacks on the ECDLP force us to carefully select
the elliptic curve parameters.

1) To avoid the Pohlig–Hellman [24] and Pollard’s Rho [25],
[35] attacks, r should be a large prime of at least 160 bits
because these attacks have a time complexity of O(

√
r).

2) The MOV and Frey–Rück attacks [21], [8] reduce the
ECDLP on E(Fq) to the DLP in Fql , for some integer
l, by using a Weil pairing on E[r]. When gcd(r, q) = 1,
the integer l is the smallest such that ql ≡ 1 (mod n).
This reduction is polynomial in terms of the number of
operations in Fql . Therefore, to avoid the MOV attack,
r should not divide ql − 1 for each 1 ≤ l ≤ C where
C = 20 is sufficient. This required property of r cannot
be obtained when the curve is supersingular.

3) When q is prime, the elliptic curves whose trace of
Frobenius t is 1 and N = q are called anomalous curves.
These curves resist the MOV attack. However, using q-
adic elliptic logarithm [28], [33] or considering the q-
primary part of the subgroup generated by P [31], one
can give a linear time method to solve the ECDLP. To
avoid these attacks, N should be different from q.

Therefore, in practice, we need ordinary, non-anomalous
(i.e. N 6= q) elliptic curves with group orders divisible by
a large prime number of at least 160 bits. In practice, an
elliptic curve is selected randomly and kept if it satisfies these
conditions. Thus, determining the order of the group E(Fq),
which is also known as the point counting problem, is of crit-
ical importance in elliptic curve cryptography. Schoof’s point
counting algorithm [29], [30] solves this problem efficiently.
Although working with random curves is not as efficient as
working with special curves like Koblitz curves [17], it is
practical. Therefore, it is a natural question to ask if the
ECDLP is equally hard for every elliptic curve over the same
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finite field having the same number of points.
A function f is called random self-reducible if the evalua-

tion of f at any given instance can be reduced in polynomial
time to the evaluation of f at one or more random instances
[6]. In [14], it is shown that almost all elliptic curves over the
same finite field having the same number of points have the
same difficulty of discrete logarithm by showing polynomial
time random self-reducibility of the ECDLP among these
curves. This result holds with the assumption of the General-
ized Riemann Hypothesis. Orders in imaginary quadratic fields
[4, Section 7] play an important role in this result because
the endomorphism ring of an ordinary curve is isomorphic to
an order in an imaginary quadratic field. For a fixed N and
m, elliptic curves that are isomorphic to the same order in an
imaginary quadratic field form the vertices of an isogeny graph
(see Section III.B) and prime degree isogenies between them
of degree less than m form the edges. The polynomial time
random self-reducibility of the ECDLP is achieved by navi-
gating this isogeny graph. Properties of imaginary quadratic
fields and orders are summarized in Section II and the random
self-reducibility of the ECDLP is summarized in Section III.

Definition 2: A hyperelliptic curve C over a finite field Fq
is defined by

C : y2 + h(x)y = f(x), h, f ∈ Fq[x]

with deg(h) ≤ g and deg(f) = 2g + 1.
This equation is called the imaginary model of the curve.

In general, deg(h(x)) ≤ g + 1 and deg(f(x)) ≤ 2g + 2 and
it is not possible to represent every hyperelliptic curve with
this model. However, in this proposal we only consider the
imaginary model because the remaining curves introduce some
extra technicalities. The integer g ≥ 0 is called the genus of
the curve and elliptic curves correspond to the g = 1 case.

The group of divisors on C is obtained from the finite formal
sums of points of C over Z:

Div(C) =

{
D =

∑
Pi∈C

niPi : ni ∈ Z
}
.

The degree of a divisor D is the sum of its coefficients
degD =

∑
ni and we denote degree zero divisors by D0.

The coordinate ring Fq[C] of C over Fq is the quotient ring

Fq[C] = Fq[x, y]/(y2 + h(x)y − f(x)).

And the function field Fq(C) of C over Fq is the field of
fractions of Fq[C]. Let ϕ be a non-zero rational function in
Fq(C) and let P ∈ C. If ϕ(P ) = 0, then ϕ is said to have
a zero and the multiplicity of this zero is assigned to νP (ϕ).
If ϕ is not defined at P , then ϕ is said to have a pole at P
and the opposite of the multiplicity of this pole is assigned to
νP (ϕ). Otherwise, we let νP (ϕ) = 0.

The divisor of ϕ is defined as

div(ϕ) =
∑
Pi∈C

νPi
(ϕ)Pi.

A non-zero function has finitely many zeros and poles. Thus,
νPi

(ϕ) = 0 for almost all the Pis and div(ϕ) is well defined.
Such a divisor is called a principal divisor. The set of principal

divisors P is a subset of D0. The quotient group JC = D0/P is
called the Jacobian of the curve C and it is an abelian variety
of dimension g.

Koblitz showed in [16] that Jacobians of hyperelliptic
curves over finite fields are good sources of cyclic groups for
cryptographic use. Intuition of Koblitz [18] was that curves
with higher genus provide better security. But this is another
example of misjudgement in the history of cryptography for
Adleman et al. [1] provided a subexponential algorithm for
discrete logarithm over the rational subgroup of the Jacobians
of large genus hyperelliptic curves over finite fields. Because
of this attack, in practice only the hyperelliptic curves of genus
1, 2, and 3 are considered to be secure [18]. However, the
security of genus 3 curves is questionable because the attack
of [1] is faster than Pollard’s Rho attack for these curves (but
still exponential). Moreover, Smith [34] showed that explicit
isogenies can transfer instances of the DLP on hyperelliptic
curves of genus 3 to non-hyperelliptic curves of genus 3,
where they are vulnerable to faster index calculus attacks. His
analysis shows that around %18.57 of hyperelliptic curves of
genus 3 over a given finite field is susceptible to this attack.

In order for a hyperelliptic curve cryptosystem to have
the same security level of an elliptic curve cryptosystem,
the underlying finite field can be chosen relatively smaller.
Moreover, there is no known subexponential algorithm to solve
the DLP for hyperelliptic curves of small genus. As in the case
of elliptic curve cryptosystems, the point counting problem is
important for random hyperelliptic curve selection. Although
there exist polynomial time algorithms for point counting, they
are impractical. It is shown in [11] that for some special curves
of genus 2, the complexity of the Schoof’s algorithm can be
reduced from Õ((log q)8) to Õ((log q)5) by making use of
the real multiplication. By using this algorithm, the authors
also compute the order of a Jacobian defined over a 512-bit
prime field which should be compared to the previous record
of 128-bit field. These results are provided in Section IV.

In the process of random elliptic curve selection, it is
assumed that the ECDLP for two elliptic curves over the
same finite field having the same number of points are equally
hard. However, its correctness was not known until the formal
justification of [14]. Now the same question should be asked
for random genus 2 curve selection. In this research, our main
aim is to show that the DLP is equally hard in a large class
of genus 2 curves.

II. ORDERS IN QUADRATIC FIELDS

Definition 3: A subfield K of the complex numbers C that
has finite degree over Q is called a number field. The degree
of K over Q is denoted [K : Q].

Definition 4: Let K be a number field. The set of all α ∈ K
that are roots of a monic integer polynomial forms a ring
called the algebraic integers of K or ring of integers of K
and denoted OK .

Definition 5: A number field K = Q(
√
n) where n 6= 0, 1

is a squarefree integer is called a quadratic field. K is called
an imaginary quadratic field if n < 0 and it is called a real
quadratic field otherwise. The discriminant dK of K is defined
to be n if n ≡ 1 (mod 4), and 4n otherwise.
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Proposition 1 ([4]): Let K be a number field.
(i) OK is a subring of C whose field of fractions is K.

(ii) OK is a free Z-module of rank [K : Q].
Definition 6 ([4]): If K is a number field and a is a nonzero

ideal of OK , then the quotient ring OK/a is finite and the
norm of a is defined to be N(a) = |OK/a|.

If K = Q(
√
n) where n is squarefree, then one can

calculate

OK =

{ Z[
√
n] if n 6≡ 1 (mod 4)

Z
[
1+
√
n

2

]
if n ≡ 1 (mod 4)

and by using the discriminant we obtain

OK = Z
[
dK +

√
dK

2

]
.

A lattice [a, b] is defined as the set {ma+ nb : m,n ∈ Z}
where a, b ∈ C. Therefore, we can write the ring of integers
in K as the lattice

OK = [1, wK ], where wK =
dK +

√
dK

2
.

Definition 7 ([4]): An order O in a quadratic field K is a
subset O ⊂ K such that

(i) O is a subring of K containing 1.
(ii) O is a finitely generated Z-module.

(iii) O contains a Q-basis of K.
Clearly, K is the field of fractions of O and OK is always

an order in K. Moreover, by definition we have O ⊂ OK
which makes OK the maximal order of K.

Lemma 1: An order O in a quadratic field K has finite
index in OK and if we set f = [OK : O], then O = Z+fwK .

This finite index f of an order O in a quadratic field K
is denoted f = [OK : O] and is called the conductor of the
order. Let us denote O as the lattice [α, β] where α, β ∈ C
and let a 7→ a′ be the nontrivial automorphism of K. Then
the discriminant D of O is defined as the number

D =

(
det

(
α β
α′ β′

))2

.

The discriminant is independent of the integral basis used
and when we use the basis O = [1, fwK ], we obtain D =
f2dK .

Let a be a nonzero ideal of O, then O/a is finite and we
define the norm of a as N(a) = |O/a|. An ideal a is called
a proper ideal when O = {β ∈ K : βa ⊂ a}. And an ideal b
of O that is a nonzero finitely generated O-module is called
a fractional ideal and it is of the form αc where α ∈ K∗ and
c is an O-ideal. Moreover, a fractional O-ideal a is invertible
if there exists another fractional O-ideal b such that ab = O.
It turns out that notions of proper ideals and invertible ideals
are identical for orders in quadratic fields:

Proposition 2: Let O be an order in a quadratic field K,
and let a be a fractional O-ideal. Then a is proper if and only
if a is invertible.

Thus, the set of proper fractional O-ideals I(O) have
inverses and they form a group under multiplication. The ideals
of the form αO where α ∈ K∗ are called principal ideals

P (O) and they are invertible. Hence, we have P (O) ⊂ I(O)
and the quotient Cl(O) = I(O)/P (O) is called the ideal
class group of the order O. Cl(O) is commonly referred as
the Picard group.

III. ELLIPTIC CURVES HAVING THE SAME NUMBER OF
POINTS OVER Fq

A. Preliminaries

Definition 8: Two elliptic curves E1 and E2 over Fq are
called isogenous if there exists a nontrivial algebraic group
homomorphism φ : E1 → E2 between them over Fq .

Theorem 1 (Tate’s theorem): Let E1 and E2 be elliptic
curves over Fq . They are isogenous ⇐⇒ #E1(Fq) =
#E2(Fq).

Hence, when an isogeny between two elliptic curves is
known, the ECDLP on one elliptic curve can be reduced to the
ECDLP on the other curve. However, constructing an isogeny
between two specific curves is considered to be hard because
there is no known polynomial time algorithm.

Definition 9: An endomorphism of E is an isogeny ϕ :
E → E defined over the algebraic closure F̄q of Fq . The set of
endomorphisms of E together with the zero map forms a ring
under the operations of pointwise addition and composition.
This ring is called endomorphism ring of E and it is denoted
by End(E).

The Frobenius endomorphism is the isogeny π : E → E of
degree q given by the equation π(x, y) = (xq, yq) where E is
defined over Fq . It satisfies the equation

π2 − [t]π + [q] = [0]

where t = q + 1 − N is the trace of Frobenius. By Hasse’s
Theorem we have |t| ≤ 2

√
q.

Definition 10: An elliptic curve E over Fq is called super-
singular if the characteristic of the field divides the trace of
Frobenius. Otherwise, it is called ordinary.

If E is supersingular, then the ring End(E) is isomorphic
to an order in a quaternion algebra and if E is ordinary, then
End(E) is isomorphic to an order in an imaginary quadratic
field [32, p. 145].

Definition 11: An isogeny φ : E1 −→ E2 over Fq is called
an `-isogeny if its kernel ker(φ) has size `. The kernel of φ
is determined by the polynomial

ψ(x) =
∏

(x0,±y0)∈ker(φ)

(x− x0) ∈ Fq.

We can represent every isogeny φ as a rational map of the
form

φ(x, y) =

(
φ1(x, y)

ψ(x)2
,
φ2(x, y)

ψ(x)3

)
,

where φ1 and φ2 are polynomials over Fq and ψ(x) is
introduced in Definition 11. Hence, construction of an isogeny
means the explicit computation of the polynomials φ1, φ2 and
ψ(x).

B. Isogeny Graphs

If an elliptic curve is ordinary, then its endomorphism ring
End(E) is an order in an imaginary quadratic field and if an
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elliptic curve E′ is isogenous to E, then End(E′) is also an
order in the same field. We denote the order generated by the
Frobenius map π with Z[π] and the conductors of End(E)
and Z[π] are denoted by

[OK : End(E)] = cE and [OK : Z[π]] = cπ.

Since the discriminant of Z[π] is dπ = t2−4q, the conductor
cπ is the largest integer such that dπ/c2π ≡ 0 or 1 (mod 4).
Equivalently, it is the unique integer for which dπ/c

2
π is a

fundamental discriminant. Thus, divisors of cπ are the only
possibilities for cE and therefore, we have finitely many
possibilities for End(E).

Proposition 3: [19, Proposition 21] Let E and E′ be elliptic
curves over the finite field Fq . Let φ : E → E′ be an isogeny
of prime degree ` different from the characteristic of the field.
Then O = End(E) contains O′ = End(E′) or O′ contains O
in K and the index of one in the other divides `.

Therefore, the orders can be uniquely identified by their
conductors and they form a tower. Such a tower of 6 levels
is shown in Figure 1 where the edges represent ascend-
ing/descending isogenies.

Z[π]

q
q

End(E)

q
OK �

�
cE

�

�

cπ

Fig. 1. Tower of endomorphism rings of elliptic curves

An `-isogeny φ : E1 → E2 is called a descending `-isogeny
if [O1 : O2] = `, it is called ascending if [O2 : O1] = ` and
it is called horizontal if O1 = O2. The possibilities for the
rational `-isogenies of E defined over Fq are given in [19,
Proposition 23] and provided in Table I.

TABLE I
NUMBER AND TYPE OF THE `-ISOGENIES

Case Number and Type

` - cE
` - cπ/cE 1 +

(
D
`

)
horizontal

`|cπ/cE
1 +

(
D
`

)
horizontal

`−
(
D
`

)
descending

` | cE
` - cπ/cE 1 ascending

`|cπ/cE
1 ascending
` descending

Let’s denote by SN,q the set of elliptic curves defined over
a given finite field Fq , up to F̄q-isomorphism that have the
same number of points N over Fq . We separate SN,q to levels

depending on the endomorphism rings of the elliptic curves
where the order with the smallest conductor form the top
level and levels descend as the conductor value of the orders
increase. Hence, two elliptic curves E1 and E2 in SN,q is on
the same level if End(E1) = End(E2). An elliptic curve E is
at the top level if End(E) = OK and it is at the bottom level
if End(E) = Z[π]. Hence, there are more elliptic curves at
lower levels than higher levels. If we connect these curves with
`-isogenies, the obtained structure resembles a volcano where
the horizontal `-isogenies at the top level form the crater.

A level of a volcano is called an isogeny graph G, where the
curves in that level form the vertices and equivalence classes of
`-isogenies between these curves over Fq form the edges. We
consider only the `-isogenies where ` is prime and less than
or equal to some specified bound m. We denote the common
endomorphism ring of all of the elliptic curves in this level
by End(E) = O. To be able to navigate the isogeny graph,
we need it to be connected and have rapid mixing properties.
Hence, m must be large enough. On the other hand, in order
to construct the isogenies, m must not be too large. In [14],
it is shown that there exists a constant δ > 0 so that these
requirements are satisfied when m = (log q)2+δ .

Definition 12: Let B be a group and T be a generating set.
We assign a color colt to each generator t of T and let us
assign every element b of B to the vertices of a graph. For
each b ∈ B and t ∈ T , the vertices corresponding to b and bt
are joined by a directed edge of color colt. Such a graph is
called a Cayley graph.

Let a, b ⊂ O be invertible ideals. By the theory of complex
multiplication [4, Section 10-11], a (viewed as a 2-dimensional
Z-lattice in C) gives rise to an elliptic curve C/a over some
number field L ⊂ C which has a complex multiplication by
O and b defines an isogeny C/a → C/ab−1 that has degree
N(b). Let us denote by H the graph whose vertices are these
elliptic curves C/a and edges are complex analytic isogenies
represented by b ⊂ O where N(b) ≤ m for the same bound
m. Then Deuring’s theory of canonical lifting of endomor-
phisms from characteristic p to characteristic zero [20], [9,
Section 3] shows that the isogeny graph G is isomorphic to
H. In [14], it is observed that nodes of H are ideal classes of
O and two ideal classes [a1] and [a2] are connected by an edge
if and only if there exists a prime ideal b with b ≤ m such that
[a1b] = [a2]. Thus, H is isomorphic to a Cayley graph of the
group Cl(O) with respect to the generators [b] ∈ Cl(O) for
every prime ideal b with N(b) ≤ m. Since G is isomorphic
to H, it is also isomorphic to this Cayley graph.

Remark 1 ([14]): We can pass from H to G by taking
reductions modulo a prime ideal in L lying over p and we
can pass from G to H by Deuring’s Lifting Theorem [20], [9].
Known algorithms for computing the isomorphism between
G and H are exponential time algorithms. However, we are
not required to compute it since we are only interested in the
graph-theoretic properties of G.

Theorem 2: [32, Theorem III.6.1.] Let φ : E1 → E2 be
an homomorphism of degree `. Then there exists a unique
isogeny φ̂ : E2 → E1 such that

φ̂ ◦ φ = [`] : E1 → E1,
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and deg(φ̂) = `.
This isogeny φ̂ is called the dual isogeny of φ.
Remark 2 ([14]): Since each isogeny φ : E1 → E2 has a

unique dual isogeny φ̂ : E2 → E1 of the same degree, G is
actually an undirected graph for ordinary elliptic curves.

C. Expander Graphs

Let G = (V, E) be a k-regular finite graph on vertices
V = {v1, . . . , vh} with undirected edges. We denote the
adjacency matrix of G by the symmetric h×h matrix A where
Aij = 1 if there is an edge between vi and vj , and Aij = 0
otherwise. Since A is symmetric, it has an orthonormal basis
where the basis elements are eigenvectors with eigenvalues
λ0, . . . , λh−1. Without loss of generality, let us assume that
λ0 ≥ λ1 ≥ . . . , λh−1. It is easy to see that a constant vector
is an eigenvector of A with eigenvalue λ0 = k and all of the
eigenvalues of A satisfy the bound λ ≤ k.

Definition 13: A family of such graphs G with h → ∞ is
said to be a sequence of expander graphs if λ1 is bounded
away from λ0 = k by a fixed amount.

To obtain expanders from abelian Cayley graphs, the aim
of [14] is to obtain a nontrivial exponent β < 1 such that
λ1 = O(kβ).

Proposition 4 ([14]): Suppose that the eigenvalue λ of any
non-constant eigenvector satisfies the bound λ ≤ c for some
c < k. Let S ⊂ V and x be any vertex in G. Then a random
walk of any length at least log 2h/|S|1/2

log k/c starting from x will

land in S with probability at least |S|2|V| .
Note that if the endpoint of the walk were uniformly

random, probability of a random walk that starts at x to land
in S would be |S||V| . Hence, the proposition means that this
probability is halved in our case for the random walks of
length longer than the specified bound. In [14], the values
k, k

k−c and |V|
|S| are all bounded by polynomials in log(h).

Hence, polylog(h) many random walks starting from x with
length polylog(h) will land in S at least once with probability
at least 1/2. This rapid mixing result is used for the polynomial
time random self-reducibility.

By the prime number theorem, λ0 = k is roughly π(m)
e ∼

m
e logm where e is the number of units in O. For G to be
an expander graph, we need to show that the separation
between λ0 and λ1 is of size 1/polylog(q) but this requires
the assumption of Generalized Riemann Hypothesis (GRH).

Lemma 2: [14, Lemma 4.1] (Assuming GRH) Let D < 0
and let O be the quadratic order of discriminant D. Then λ1
is bounded by O(m1/2 log |mD|).

If we let q large and p(x) = x2+δ where δ > 0 is fixed,
this lemma shows that if we choose m = p(log q), then λ1 =
O(λβ0 ) for any β > 1

2 + 1
δ+2 , since |D| ≤ 4q and λ0 ∼ m

e logm .
Hence, our isogeny graphs are expanders and this bound with
Proposition 4 proves the following theorem.

Theorem 3 ([14]): (Assuming GRH) There exists a polyno-
mial p(x), independent of N and q, such that for m = p(log q)
the isogeny graph G on each level is an expander graph, in the
sense that any random walk on G will reach a subset of size
h with probability at least h

2|G| after polylog(q) steps (where
the implicit polynomial is again independent of N and q).

Thus, if we have an algorithm A that solves the ECDLP
for some proportion of the curves in a fixed level, a random
walk from any curve probabilistically reaches this proportion
in at most polylog(q) steps. Since each step consists of a
low degree isogeny, their composition can be computed in
polylog(q) steps. Hence, we obtain the following corollary.

Corollary 1 ([14]): (Assuming GRH) The ECDLP is ran-
dom self-reducible in the following sense: given any algorithm
A that solves the ECDLP on some fixed positive proportion
of curves in a fixed level, one can probabilistically solve the
ECDLP on any given curve in that same level with polylog(q)
expected queries to A with random inputs.

As it can be seen from the corollary, the ECDLP random
self-reduction is provided only for a fixed level and theoreti-
cally it is not proven for all elliptic curves in SN,q. To reduce
the ECDLP on one level to another, one needs to construct
vertical isogenies between these levels and the fastest known
algorithm [19] has complexity O(`4) where ` is the largest
prime dividing the conductor of one level and not the other.
Hence, this can be done when cπ is polynomially smooth. On
the other hand, for a randomly selected curve over Fq , most
of the time SN,q consists of only one level.

D. Navigating the Isogeny Graph

Definition 14: The j-invariant of a lattice L is defined to
be the complex number

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2

where

g2(L) = 60
∑

w∈L−{0}

1

ω4
and g3(L) = 140

∑
w∈L−{0}

1

ω6
.

Over an algebraically closed field, two elliptic curves are
isomorphic if and only if they have the same j-invariant.
For a given elliptic curve E, if an elliptic curve E′ is m-
isogenous to E, then j(E′) is a root of the modular equation
Φm(j(E), Y ) = 0 and the modular equation is of the form

Φm(X,Y ) = Xm+1 + Y m+1 +

m∑
a=0

m∑
b=0

fabX
aY b

where fab ∈ Z.

Since the isogeny graph G has exponentially many nodes,
it is not possible to compute the whole graph or store it.
However, for a given curve E and a prime `, we can navigate
the isogeny graph locally by computing the curves E′ that
are connected to E with an isogeny of degree `. Idea is
to compute the j-invariants of the curves E′ by solving the
modular polynomial relation Φ`(j(E), j(E′)) = 0. The time
complexity of this step is O(`3) field operations [5, Section
3]. Once the j-invariants are known, the isogenies can be
computed by using the algorithm of Fouquet–Morain [7].
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IV. COUNTING POINTS ON GENUS 2 CURVES WITH REAL
MULTIPLICATION

A. Introduction

We denote the Frobenius endomorphism of JC by π and the
dual by π̂ such that ππ̂ = [q]. The characteristic polynomial
of π is of the form

χ(T ) = T 4 − s1T 3 + (s2 + 2q)T 2 − qs1T + q2 (1)

where s1 and s2 are integers. Determining the values of s1 and
s2 is identical to solving the point counting problem because
#JC(Fq) = χ(1). Weil bounds imply that |s1| ≤ 4

√
q and

|s2| ≤ 4q and Rück [27] shows that the possible values belong
to the subset such that

{(s1, s2) : s21 − 4s2 ≥ 0 and s2 + 4q ≥ 2|s1|}.

We denote by [`] the multiplication by ` on JC and JC [`]
denotes its kernel. Similarly, if φ is an endomorphism on JC
then JC [φ] = ker(φ).

Definition 15 ([11]): Let P 7→ DP be a fixed embedding
of C in JC . We say that an endomorphism φ of JC is explicit
if we can effectively compute polynomials d0, d1, d2, e0, e1,
and e2 such that if P = (xP , yP ) is a generic point of C,
then the Mumford representation of φ(DP ) is given by(
x2 +

d1(xP )

d2(xP
x+

d0(xP )

d2(XP )
, y − yp

(
e1(xP )

e2(xP )
x+

e0(xP )

e2(xP )

))
.

The d0, d1, d2, e0, e1, and e2 are called the φ-division polyno-
mials.

Let D be a generic element of JC , then its Mumford
representation is D = (x2 + a1x + a0, y − (b1x + b0)).
We can compute with this generic element by reducing the
coefficients modulo Iφ where Iφ is an ideal in Fq[a1, a0, b1, b0]
that vanishes on the nonzero elements of JC [φ]. Complexity
analysis of [12] shows that we can compute Iφ in Õ(δ3) field
operations where δ is the maximum among all the degrees of
the φ-division polynomials.

The efficient point counting algorithms originate from
Schoof’s work [29] and they construct χ(T ) by first computing
the polynomials χ`(T ) = χ(T ) (mod `) for sufficiently many
primes ` and then using the Chinese Remainder Theorem
(CRT).

Let q̄ denote q modulo `. In order to compute χ`(T ), we
first compute (π2 + [q̄])2(D), (π2 + [q̄])π(D), and π2(D) for
a generic element D of JC [`] and then search for (s̄1, s̄2) in
(Z/`Z)2 such that

(π2 + [q̄])2(D)− [s̄1](π2 + [q̄])π(D) + [s̄2]π2(D) = 0. (2)

In [23], Pila shows that the set of primes ` with ` < 21 log q
is sufficient to apply the CRT. So the number of primes we
use is O(log q).

The complexity of the classical Schoof–Pila point counting
algorithm is as follows. For a fixed `, we first compute the `-
division polynomials [3] to compute χ`(T ) that have degrees
in O(`2). Then we compute the ideal I` in Fq[a1, a0, b1, b0]
and since `-division polynomials have degrees in O(`2),
this computation costs Õ(`6) field operations. To check the
equality in (1), we compute Frobenius images of the generic

element in Õ(`4 log q) and find the matching (s̄1, s̄2) in
Õ(`5). Thus, the total complexity of computing χ`(T ) is
Õ(`4(`2+log q)) field operations. Since we repeat this process
for O(log q) many `s and since each ` is bounded by O(log q),
the total complexity of the point counting algorithm becomes
Õ((log q)8).

For large values of `, this algorithm becomes infeasible
and in practice it is run for small values of ` to obtain s1
and s2 modulo some integer M and then a baby-step giant-
step (BSGS) algorithm is used. When M < 8

√
q, BSGS

algorithm reduces the search space of (s1, s2) from O(q3/2) to
O(q3/4/M2) and the time complexity becomes Õ(q3/4/M).
Since |s1| < 4

√
q, when we have M ≥ 8

√
q, the value of s1

is fully determined and the search space reduces to O(q/M)
for which the time complexity becomes Õ(

√
q/M).

B. Point Counting in Genus 2 with Real Multiplication

Definition 16 ([11]): An explicit endomorphism φ is said
to be efficiently computable if the cost of evaluating φ at points
of JC(Fq) requires only O(1) field operations. In practice, this
means that the φ-division polynomials have small degree.

When JC is ordinary and simple, χ(T ) becomes an ir-
reducible polynomial defining a quartic CM-field with real
quadratic subfield Q(

√
∆) and JC is said to have real multi-

plication (RM) by Q(
√

∆). For a randomly selected curve, we
have ∆ = O(q) but [11] considers only the curves that admit
an explicit (see Definition 15) endomorphism φ such that

Z[φ] = Q(
√

∆) ∩ End(JC)

and disc(Z[φ]) = ∆ for small ∆. The authors also provide
examples for ∆ = 5 and ∆ = 8. Moreover, it is assumed that
the trace Tr(φ) and norm N(φ) are known and φ is efficient
(see Definition 16).

Let ψ = π+ π̂. Then Z[ψ] is a subring of the real quadratic
subring of End(JC) with characteristic polynomial

ξ(T ) = T 2 − s1T + s2

and
disc(Z[ψ]) = s21 − 4s2.

Since Z[φ] = Q(
√

∆) ∩ End(JC), Z[ψ] is contained in Z[φ].
So there exist integers m and n such that ψ = m + nφ. We
can determine s1 and s2 by computing n and m because s1 =
Tr(ψ) = 2m+ nTr(φ) and s2 = N(ψ) = (s21 − n2∆)/4.

We note that the composition of ψ = π + π̂ and π gives

ψπ = π2 + [q] = mπ + nφπ.

Thus, we can compute m and n modulo ` by first computing
(π2 + [q̄])(D), π(D), and φπ(D) for a generic element D of
JC [`] and then by searching for (m̄, n̄) in (Z/`Z)2 such that

(π2 + [q̄])(D)− [m̄]π(D)− [n̄]φπ(D) = 0. (3)

Replacing equation (2) with equation (3) (i.e., searching for
(m,n) instead of (s1, s2)) provides the following advantages:

1) Equation (2) requires four Frobenius computations which
are costly in practice. However, equation (3) requires two
Frobenius computations.
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2) We have s1 = O(
√
q) and s2 = O(q). However, m and n

are both in O(
√
q), so the search space of BSGS reduces

to O(
√
q/M2) and this reduces the time complexity of

BSGS to O(
√
q/M).

3) The multiplication of m and n is also in O(
√
q) and this

reduces the number of primes ` to be considered by half.

C. Split Primes in Q(
√

∆)

If a prime ` splits in an RM order Z[φ] in Q(φ) ∼= Q(∆) as
(`) = p1p2, then JC [`] decomposes as JC [`] = JC [p1] ⊕
JC [p2]. Moreover, any point D in JC [`] can be uniquely
expressed as a sum D = D1 +D2 where Di is in JC [pi].

If the order Z[φ] has class number 1 (i.e., the number of
elements of Cl(Z[φ]) is 1), then all of its ideals are principal.
Hence, we can find a generator for each of the ideals pi
and [11] shows that the coefficients of these generators are
in O(

√
q) and the generators can be computed in O(`) field

operations.
Both ψ(Di) and φ(Di) are elements of Z[φ]/pi ∼= Z/`Z.

We know x̄i = φ (mod pi), so we have

ψ(Di) = [m̄+ n̄x̄i](Di) = [ȳi](Di).

Th composition of both sides with π gives

(π2 + [q̄])(Di) = [ȳi]π(Di),

which is a discrete logarithm in the cyclic group 〈Di〉 ∼= Z/`Z.
We first compute (ȳ1, ȳ2) and recover ȳ in Z[φ]/(`) by CRT.
Then we solve for (m̄, n̄) such that ȳ = m̄+ n̄φ ∈ Z[φ]/(`).

Asymptotically, half of the primes ` split in Z[φ] by the
Chebotarev density theorem [4, Theorem 8.17]. So it suffices
to consider split primes in O(log q). The advantage of working
with split primes is, the computations are modulo the ideal
for JC [pi] of degree in O(`2) instead of the ideal for JC [`] of
degree in O(`4). This reduces the complexity of computing
χ`(T ) from Õ(`4(`2 + log q)) to Õ(`2(` + log q)). Thus,
the complexity of the point counting algorithm reduces from
Õ((log q)8) to Õ((log q)5).

The computation of the order of an RM Jacobian defined
over a 512-bit prime field is provided in [11] to show the
reduced complexity of the point counting problem that is
obtained by using split primes. Note that the previous record
of point counting in genus 2 was over a 128-bit field.

V. RESEARCH PROPOSAL

For an elliptic curve to resist the known attacks on the
ECDLP, its group order should satisfy some properties (see
Section I). In practice, a randomly selected elliptic curve is
kept if it satisfies these constraints. This common practice
assumes that the discrete logarithm problems for two elliptic
curves over the same finite field having the same number
of points are equally hard. However, its correctness was not
known until the formal justification of [14]. The attacks on
the ECDLP mentioned in Section I have similar variants that
are applicable to curves of higher genus. Therefore, random
selection of curves of genera 2 and 3 should be justified, too.

Like the ECDLP, there is no known subexponential algo-
rithm to solve the discrete logarithm problem on the Jacobians

of a curve of small genus over a finite field. Moreover, a
hyperelliptic curve C over the finite field Fq with genus g
has #JC(Fq) ≈ qg . Thus, when compared to an elliptic curve
cryptosystem, we can choose a much smaller underlying finite
field for a hyperelliptic curve cryptosystem to achieve the same
security. For example, an elliptic curve cryptosystem defined
by an ordinary elliptic curve over F2160 has the same security
as a hyperelliptic curve cryptosystem defined by a genus 2
curve over F280 .

However, the attack of [1] provides a subexponential algo-
rithm for the DLP on the Jacobians of large genus hyperelliptic
curves. Although this attack becomes exponential for small
genus, it is still faster than Pollard’s Rho [7] attack when
g ≥ 3. Hence, only the genus 2 curves are unaffected by this
attack and for this reason, we propose to investigate genus 2
curves in this research, with the main goal of showing that the
DLP is equally hard in a large class of genus 2 curves.

As it is done for the random self-reducibility of the ECDLP
in [14], our first goal is to show the random self-reducibility
of the DLP for genus 2 curves having the same endomorphism
ring. Then we will focus on constructing ascending/descending
isogenies to provide random self-reducibility of the DLP for
the curves having different endomorphism rings. However,
moving from genus 1 to genus 2 curves introduces differences
and new technical difficulties. First of all, two genus 2 curves
having the same number of points are not necessarily isoge-
nous. Indeed, Tate’s isogeny theorem says that two abelian
varieties A1 and A2 over Fq are isogenous if and only
if their respective Frobenius endomorphisms have the same
characteristic polynomial (in the case of elliptic curves, this
is equivalent to having the same number of points). Thus,
we restrict and study the random self-reducibility of the DLP
for genus 2 curves whose Frobenius endomorphisms have the
same characteristic polynomial.

On the other hand, genus 2 curves lack some of the
efficient algorithms we have for elliptic curves. For example,
as mentioned in Section IV, point counting algorithms become
impractical when the underlying finite field is large. Further-
more, explicitly computing isogenies for genus 2 curves is not
as efficient as constructing isogenies for genus 1 curves.

Definition 17: [13, Lemma 7.6] Let A be a principally
polarized abelian surface and let R be a proper subgroup
of A[`]. Then R is the kernel of an isogeny of principally
polarized abelian surfaces ϕ : A −→ B if and only if
R ∼= (Z/`Z)2 is a maximal isotropic subgroup with respect to
the Weil pairing. Such a ϕ is called an (`, `)-isogeny.

A polynomial time algorithm for computing (`, `)-isogenies
on Jacobians of genus 2 curves is provided in [26]. So we
can construct (`, `)-isogenies when we are constructing our
isogeny graphs but not every isogeny is of this form. Also, one
has to carefully select the `’s according to their decomposition
in the quartic field. Thus we will not be able to construct
every isogeny. Another drawback is, as it is shown in [13],
an isogeny graph that is drawn using (`, `)-isogenies does not
have a volcano shape. These introduce extra difficulties for
constructing and navigating the isogeny graphs.

Moreover, the arithmetic of higher genus curves is much
more complex than the arithmetic of elliptic curves. Speeding
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up the arithmetic of genus 2 curves is also an area that we
want to focus in this research and to the best of our knowledge,
fastest genus 2 arithmetic is provided in [10] which is based
on Theta functions.

In addition, ordinary elliptic curves over a finite field have
complex multiplication in an imaginary quadratic field. In an
imaginary quadratic field K, orders are uniquely identified
by their index in OK (i.e., by their conductors). Thus, the
endomorphism rings generated by the ordinary elliptic curves
over the same finite field having the same number of points
form a tower (see Figure 1). However, all genus 2 curves
over a finite field have complex multiplication in a quartic
field and the endomorphism rings in this case form a lattice,
instead of a tower. An example to lattice of orders is given
in Figure 2 where the vertices represent orders and the edges
indicate that the order below is contained in the order above.
Therefore, it is harder to identify the endomorphism rings
of the genus 2 curves and navigate between levels. Bisson
provided a subexponential algorithm [2, Algorithm IV.I.4] to
locate the endomorphism ring of a curve on such lattices.
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Fig. 2. Endomorphism rings of genus 2 curves

Unlike the elliptic curve case, in the genus 2 case isomor-
phism invariants of curves are Igusa invariants j1, j2, j3 [13,
Section 7.2.2]. In this case, one needs to know how to compute
the Igusa invariants of (`, `)-isogenous curves.

In this research, we are also interested in the computational
challenges such as the point counting problem and computa-
tion of explicit isogenis. We want to improve and implement
algorithms related to these problems.
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