
1

IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS OF REDUCED ROUND HIGHT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CİHANGİR TEZCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

JULY 2009

Approval of the thesis:

IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS OF REDUCED ROUND HIGHT

submitted by CİHANGİR TEZCAN in partial fulfillment of the requirements for the degree
of Master of Science in Department of Cryptography, Middle East Technical University
by,

Prof. Dr. Ersan Akyıldız
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Mathematics

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
METU, Institute of Applied Mathematics

Assoc. Prof. Ali Doğanaksoy
METU, Department of Mathematics

Dr. Muhiddin Uğuz
METU, Department of Mathematics

Dr. Meltem Sönmez Turan

Dr. Nurdan Saran
Çankaya University, Department of Computer Engineering

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: CİHANGİR TEZCAN

Signature :

iii

ABSTRACT

IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS OF REDUCED ROUND HIGHT

Tezcan, Cihangir

M.Sc., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

July 2009, 49 pages

Design and analysis of lightweight block ciphers have become more popular due to the fact

that the future use of block ciphers in ubiquitous devices is generally assumed to be extensive.

In this respect, several lightweight block ciphers are designed, of which HIGHT is proposed

by Hong et al. at CHES 2006 as a constrained hardware oriented block cipher. HIGHT

is shown to be highly convenient for extremely constrained devices such as RFID tags and

sensor networks and it became a standard encryption algorithm in South Korea.

Impossible differential cryptanalysis is a technique discovered by Biham et al. and is applied

to many block ciphers including Skipjack, IDEA, Khufu, Khafre, HIGHT, AES, Serpent,

CRYPTON, Twofish, TEA, XTEA and ARIA. The security of HIGHT against impossible

differential attacks is investigated both by Hong et al. and Lu: An 18-round impossible dif-

ferential attack is given in the proposal of HIGHT and Lu improved this result by giving a

25-round impossible differential attack. Moreover, Lu found a 28-round related-key impos-

sible differential attack which is the best known attack on HIGHT. In related-key attacks, the

attacker is assumed to know the relation between the keys but not the keys themselves.

In this study, we further analyzed the resistance of HIGHT against impossible differential at-

iv

tacks by mounting a new 26-round impossible differential attack and a new 31-round related-

key impossible differential attack. Although our results are theoretical in nature, they show

new results in HIGHT and reduce its security margin further.

Keywords: Impossible Differential Cryptanalysis, Related-key Attacks, HIGHT, Lightweight

Block Ciphers

v

ÖZ

DÖNGÜ SAYISI AZALTILMIŞ HIGHT BLOK ŞİFRESİNİN İMKANSIZ
DİFERANSİYEL KRİPTANALİZİ

Tezcan, Cihangir

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Haziran 2009, 49 sayfa

Yakın gelecekte blok şifrelerin hafif platformlarda sıkça kullanılacağı hemen hemen herkes

tarafından öngörülmektedir. Bu sebeple özellikle son dönemlerde bu tip platformlara uy-

gun blok şifrelerin tasarım ve analizi çokça rağbet görmektedir. Bu şifrelerden birisi olan

HIGHT, Hong vd. tarafından CHES 2006’da kısıtlı donanımlara yönelik bir blok şifre olarak

sunulmuştur. HIGHT’ın, radyo frekansı ile tanımlama (RFID) etiketleri ve algı ağları gibi

son derece kısıtlı cihazlar için çok elverişli olduğu gösterilmiş ve HIGHT Güney Kore’de bir

standart şifreleme algoritması olmuştur.

İmkansız difereansiyel kriptanaliz tekniği Biham vd. tarafından bulunmuş ve Skipjack, IDEA,

Khufu, Khafre, HIGHT, AES, Serpent, CRYPTON, Twofish, TEA, XTEA ve ARIA gibi bir

çok blok şifreye uygulanmıştır. HIGHT’ın imkansız diferansiyel saldırılarına karşı güvenliği

Hong vd. ve Lu tarafından incelenmiştir: Hong vd. HIGHT’ı sundukları çalışmalarında 18

döngülük bir imkansız diferansiyel atak tanımlamışlardır ve Lu 25 döngülük yeni bir imkansız

diferansiyel atak vererek bu sonucu geliştirmiştir. Ayrıca Lu’nun sunduğu 28 döngülük ilişkili

iki anahtar kullanan imkansız diferansiyel atağı, HIGHT’a yapılan şu ana kadarki en iyi

vi

ataktır. İlişkili anahtar saldırılarında anahtarlar arasındaki ilişki bilinmektedir.

Bu çalışmada HIGHT’ın imkansız differensiyal saldırılarına karşı olan dayanıklılığını yeni

bir 26 döngülük imkansız diferansiyel atak ve yeni bir 31 döngülük ilişkili anahtar imkansız

diferansiyel atak vererek inceledik. Bu saldırılar teorik ataklar olmalarına rağmen, HIGHT

için yeni sonuçlar göstermekte ve HIGHT’ın güvenlik sınırını azaltmaktadır.

Anahtar Kelimeler: İmkansız Diferansiyel Kriptanaliz, İlişkili Anahtar Saldırıları, HIGHT,

Hafif Blok Şifreler

vii

To my father Hayri, my mother Sırma and my brother Cem

viii

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my instructors at Department of Mathe-

matics: Assoc. Prof. Ali DOĞANAKSOY, Assist. Prof. Feza ARSLAN, Assist. Prof. Özgür

KİŞİSEL, Dr. Muhammed DABBAGH, Assist. Prof. Ayşe BERKMAN, Prof. Dr. Tanıl

ERGENÇ, Prof. Dr. Cem TEZER, Prof. Dr. Hurşit ÖNSİPER, and Prof. Dr. Zafer NURLU,

for making me realize the unexpected beauty of mathematics.

It is a great pleasure to thank my colleagues and co-authors Kerem VARICI and Onur ÖZEN

for their support and motivation. This study would not be complete without their help.

I would like to thank Çağdaş ÇALIK and Meltem Sönmez TURAN for proofreading the the-

sis.

I am grateful to my family for always trusting and supporting me. I want to thank my friends

and everyone at Institute of Applied Mathematics.

Finally, I would like to thank The Scientific and Technological Research Council of Turkey

(TÜBİTAK) for supporting me with M.Sc. scholarship.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Block Ciphers . 2

1.2 Cryptanalysis of Block Ciphers . 3

1.3 Complexity . 4

1.4 Differential Cryptanalysis . 5

1.5 Related-Key Attacks . 5

1.6 Impossible Differential Cryptanalysis 6

1.7 Related-Key Impossible Differential Cryptanalysis 7

1.8 Our Contribution and the Structure of the Thesis 8

2 OVERVIEW OF HIGHT . 10

2.1 HIGHT . 10

2.2 Notation . 11

2.3 Specifications . 12

2.4 Previous Impossible Differential Attacks on HIGHT 14

2.4.1 Attack on 18-round HIGHT 15

x

2.4.2 Attack on 25-round HIGHT 15

2.5 Previous Related-key Impossible Differential Attacks on HIGHT . . 17

2.5.1 Attack on 28-round HIGHT 17

3 IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS 19

3.1 17-round Impossible Differential Characteristic 19

3.2 26-round Path . 21

3.3 Data Collection and Memory . 22

3.4 Impossible Differential Attack on HIGHT-26 24

3.5 Complexity of the Attack . 29

3.5.1 Data Complexity . 29

3.5.2 Memory Complexity . 29

3.5.3 Time Complexity . 29

3.6 Summary . 30

4 RELATED-KEY IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS 32

4.1 22-round Related-key Impossible Differential Characteristic 32

4.2 31-round Path . 33

4.3 Data Collection . 34

4.4 Related-Key Impossible Differential Attack on HIGHT-31 36

4.5 Complexity . 39

4.5.1 Data Complexity . 40

4.5.2 Memory Complexity . 40

4.5.3 Time Complexity . 41

4.6 Summary . 42

5 CONCLUSION . 44

REFERENCES . 46

APPENDICES

xi

LIST OF TABLES

TABLES

Table 2.1 Comparison of the hardware implementations of HIGHT and AES 11

Table 2.2 Notation . 11

Table 2.3 Relations Between the Original Key and Whitening Keys and Subkeys . . . 13

Table 2.4 13-Round Impossible Differential Characteristic 16

Table 2.5 16-Round Impossible Differential Characteristic 16

Table 2.6 19-Round Related-key Impossible Differential Characteristic, ∆MK10 = e7 18

Table 3.1 17-Round Impossible Differential Characteristic 20

Table 3.2 26-Round Impossible Differential Path . 23

Table 3.3 26-Round impossible differential attack 28

Table 3.4 Time Complexities of Each Step of the Attack 31

Table 3.5 Summary of the impossible differential attacks on HIGHT 31

Table 4.1 22-Round Related-key Impossible Differential Characteristic, ∆MK9 = e7 . 33

Table 4.2 31-Round Related-Key Impossible Differential 35

Table 4.3 31-Round related key impossible differential attack, ∆MK15 = e7 40

Table 4.4 Time Complexities of Each Step of the Attack 42

Table 4.5 Summary of the related-key impossible differential attacks on HIGHT . . . 43

Table 5.1 Summary of the known attacks on HIGHT 45

xii

LIST OF FIGURES

FIGURES

Figure 2.1 ith Round of HIGHT . 12

xiii

CHAPTER 1

INTRODUCTION

Cryptology, the science of communication secrecy consists of two main components, cryp-

tography and cryptanalysis. Cryptography is the science of designing secure ciphers and

cryptanalysis is the science of analysing the security of ciphers by trying to find weaknesses

in the design.

A cipher makes a message unreadable to anyone except those having the key by using an

algorithm. More formally, let P denote the message space, which contains strings of symbols

of a predetermined alphabet and C denote the ciphertext space which also contains strings of

symbols of a predetermined alphabet.

An element p of P is called a plaintext and an element c of C is called a ciphertext. Let K

denote the key space that contains strings of predetermined size. An element k of K is called

a key. A one-to-one function Ee from P to C, which is uniquely determined by e is called an

encryption function. One-to-one property is necessary since we want to reverse the process.

A one-to-one function Dd from Ee(P) ⊂ C to P, which is uniquely determined by d is called

a decryption function.

A cipher or an encryption scheme contains an encryption function Ee and a decryption func-

tion Dd where e, d ∈ K and d is uniquely determined for any e.

If e and d are equivalent or one of them can be easily obtained from the other in a cipher, that

scheme is called a symmetric-key scheme or symmetric-key encryption. Two main symmetric-

key encryption schemes are block ciphers and stream ciphers.

1

1.1 Block Ciphers

In a block cipher, the message p is divided into fixed length strings which are called blocks

and one block is encrypted at a time. Generally, the encryption is done by iterating the round

function of the cipher for r many times where r is a predetermined integer.

Theory of block ciphers is well investigated and a lot of block ciphers are proposed. Although

most of these block ciphers have different designs, they can be roughly categorized as Feistel

Networks and Substitution-Permutation Networks (SPNs).

In Feistel networks, a round consists of dividing the input into two halves, applying the round

function to one half using a subkey, exclusive-oring (XOR) the output of the round func-

tion with the other half and swapping the two halves. There is no need to do the swapping

operation in the last round since it would not have any effect on the security of the cipher.

Encryption and decryption is identical in Feistel networks except for the order of the subkeys.

A Feistel cipher is called unbalanced if the divided parts are not of equal size and this kind of

constructions are investigated in [32].

SPN uses substitution boxes (S-boxes) and permutation boxes (P-boxes) where an nxm S-box

substitutes n bits with m bits and a P-box permutes the bits. Generally in a SPN a round

consists of XORing the input with a subkey, applying S-boxes and then P-boxes. The output

of the last round is also XORed with a subkey.

The Feistel network is named after Horst Feistel who did important research in this area and

proposed Lucifer [31] cipher with Don Coppersmith which is a Feistel network. The Data

Encryption Standard (DES) [26], which is a revised version of Lucifer algorithm, is designed

by an IBM team in 1974 and it is adopted as national standard in 1977 by National Bureau of

Standards (which is known as National Institute of Standards and Technology (NIST) today).

DES is an example of a Feistel cipher.

Since the advances in technology result in faster central processing units, 56-bit key of DES

was becoming vulnerable to brute force attacks in which the attacker tries every possible

key. For this reason, on January 2, 1997, NIST announced a request for candidate algorithms

for the Advanced Encryption Standard (AES) [18] which would support 128, 192 and 256-

bit keys. 15 algorithms were submitted to the competition and on October 2, 2000, NIST

2

announced [19] that the winner of the AES competition is Rijndael [1], which is designed by

Daemen and Rijmen. AES is an example of an SPN.

1.2 Cryptanalysis of Block Ciphers

One might choose to keep the encryption algorithm secret to increase the security. However

in history, it is observed that secret algorithms obtained by reverse engineering, betrayal and

espionage. Hence it is a good idea to assume that the security of the encryption algorithm

should rely on the secrecy of the key, which is also know as the Kerckhoffs’ Principle.

The most trivial way to attack a block cipher is to try every key in the key space. This is known

as exhaustive search or brute force attack. This can be done by obtaining a few plaintexts and

corresponding ciphertexts and encrypting these plaintexts by every possible key (this makes

the attack a known-plaintext attack). If a key encrypts the plaintext to the previously known

ciphertext, then that key becomes a candidate but sometimes it may not be the correct secret

key. Such a case is called a false alarm. This is why we need to test that candidate key on

more than one plaintext. A similar attack can be done by only decrypting the ciphertexts

and checking whether the obtained plaintexts are something meaningful in the language that

the plaintexts are suspected to be written. In that sense the attack becomes a ciphertext-only

attack.

Note that exhaustive search is a generic method and it can be applied to any block cipher.

For this reason the key space is kept large in the design of block ciphers to avoid brute force

attacks. The length of the key depends on the computational power of computers which

depends on the current technology.

If the block size of a block cipher is b and if we know 2b plaintexts and corresponding ci-

phertexts, this means that although we do not know the key, given a plaintext we can find the

corresponding ciphertext or vice versa. This generic attack is known as dictionary attack or

table attack.

A cipher is considered broken if an attack is given which finds the secret key faster than

exhaustive search and uses less data than dictionary attack. If the attack is still infeasible, it is

called a theoretical attack and otherwise, it is called a practical attack.

3

Most of the attacks in the literature requires additional knowledge about the system which

determines the type of the attack:

• Ciphertext-only attack (CO): In this kind of attacks, the attacker has the knowledge

of some ciphertexts which are encrypted by the unknown secret key.

• Known-plaintext attack (KP): In known-plaintext attacks, the attacker has the knowl-

edge of some plaintexts and corresponding ciphertexts.

• Chosen-plaintext (ciphertext) attack (CP): In this scenario, the attacker has the knowl-

edge of some plaintexts having some particular structure of her choice and correspond-

ing ciphertexts. Similarly for chosen-ciphertext attack, the attacker has the knowledge

of some ciphertexts having some particular structure of her choice and corresponding

plaintexts.

• Adaptive chosen-plaintext (ciphertext) attack (ACP): This type of attack is similar

to chosen plaintext attack. However this time, the chosen plaintexts depends on the re-

sults of the previous encryptions of plaintexts. Similarly for adaptive chosen-ciphertext

attack, the chosen ciphertexts depends on the results of the previous decryptions of

ciphertexts.

1.3 Complexity

Attacks are compared with the amount of resources they require. These resources are defined

as data complexity, time complexity and memory complexity:

• Data Complexity: The amount of plaintexts or ciphertexts that is required to perform

the attack.

• Memory Complexity: The amount of storage required to perform the attack.

• Time Complexity: The amount of time required to perform the attack. Most of the

time, it is measured by the number of encryptions or memory accesses.

In the case of exhaustive search, if the secret key is n bits, then the time complexity is 2n

encryptions. The attack requires a few plaintexts or ciphertexts and the storage is required

4

only for the values that are used in the encryption (or decryption) process. Hence the data and

memory complexities are negligible.

In the case of dictionary attack, if we put every ciphertext and plaintext in a table, such an

attack has 2b data complexity, 2b memory complexity and negligible time complexity.

1.4 Differential Cryptanalysis

Differential cryptanalysis [25] was discovered by Biham and Shamir in late 1980s and it is

used to attack various block ciphers, stream ciphers and hash functions. This technique breaks

DES theoretically.

Differential cryptanalysis is a statistical chosen-plaintext attack and it considers differential

relations between inputs and outputs for r consecutive rounds, for some integer r.

When two different inputs are encrypted with the secret key, the probability of the difference

of the corresponding outputs to be β, for some β, is 2−b where b is the block size. If an

α difference in input blocks results in β difference in the output blocks after r rounds of

encryption with a probability higher than 2−b, we call this relation an r-round differential

characteristic. A differential characteristic with high probability is used to distinguish the

correct subkeys from the wrong ones.

Today, differential cryptanalysis plays an important role in the design of blocks ciphers and

designers make their algorithms resistant to this attack by giving an upper bound to the prob-

ability of r-round differentials [27].

In 1994, Knudsen discovered truncated differential cryptanalysis [35] which is an extension

of differential cryptanalysis in which the differences are not fully specified.

1.5 Related-Key Attacks

In related key attacks, the adversary knows the relation between the keys that are used but does

not know the keys. If the key scheduling part of a block cipher is not strong, this additional

knowledge of the relation between the keys reduces the strength of the whole block cipher. It

is important to use these kind of attacks to find weaknesses in the key scheduling part of the

5

algorithm.

The idea of related-key attacks are found independently by Biham [11] and Knudsen [28]. In

[11, 28], it is shown that LOKI89 [29], LOKI91 [30] and Lucifer ciphers have weaknesses for

related key attacks.

1.6 Impossible Differential Cryptanalysis

The cryptanalytic technique of impossible differential attack is discovered by Biham, Biryukov

and Shamir and it is first presented at Rump Session of CRYPTO 1998 by Shamir [16]. Later

on in [14], they presented this technique by giving an attack that breaks Skipjack [17] reduced

from 32 to 31 rounds. They also used this technique to break reduced round version of IDEA

[21] and Khufu [23] in [22]. Independently in 1998, in his proposal [20] for AES, Knudsen

gave an attack to 6-round DEAL [20] which is similar to impossible differential cryptanalysis.

Impossible differential cryptanalysis uses an impossible differential which is a truncated dif-

ferential characteristic that holds with probability 0. One way of obtaining such a differential

is the miss in the middle technique, that is the combination of two truncated differentials both

of which hold with probability 1 and do not meet in the middle. That is, if a difference α

becomes β after r1 rounds of encryption and a difference δ becomes γ after r2 rounds of de-

cryptions and if β , γ, we conclude that the difference α cannot become δ after r1 + r2 rounds

of encryption. i.e. α→ β , γ ← δ.

An impossible differential obtained with a miss in the middle technique works as a sieve in

the procedure. If under a subkey that impossible differential characteristic holds, it means that

the corresponding subkey is not the correct subkey and we eliminate it.

As in the case of differential cryptanalysis, impossible differential attacks are chosen plaintext

attacks.

An impossible differential characteristic on r rounds of a block cipher can be used to distin-

guish a random permutation f from r-round version of that cipher. Assume the α difference

cannot produce β after r rounds of encryption. If an input pair of f has the difference α and

the corresponding output difference is β, then it is obvious that f is not the r-round version of

the cipher. If difference β is not observed, the number of pairs should be increased enough to

6

be sure that f is not a random permutation. This number of pairs depends on the block size

of the cipher and the structure of the characteristic.

For example, assume that the block size is n and the β difference has fixed k bits (hence n − k

bits of β can be anything). For a random pair, the probability of not observing the β difference

is 1 − 2−k. Therefore if we use 2p pairs and do not observe the β difference, the probability of

incorrectly identifying a random permutation as the r-round version of the cipher is (1−2−k)2p
.

Hence, we must choose the value of p larger than k to make this probability close to 0. For

small values of k, this probability can be calculated easily with a computer. For large values,

the following approximation can be used:(
1 −

1
2k

)c·2k

=

(1 − 1
2k

)2k
c

≈

(
1
e

)c

=
1
ec . (1.1)

This approximation can be obtained by substituting −1 for x in the formal limit definition of

exponential function which is

ex = lim
n→∞

(
1 +

x
n

)n
. (1.2)

When constructing plaintext pairs, the idea of structures is generally used in differential at-

tacks. Assume that the α difference has x many 0 bits and y many undetermined bits and

the block size n is x + y. Fixing the bits in the places where α has no difference is called a

structure. Now we can construct 2y different blocks which is in this structure and any two

blocks of this structure has difference α. Hence the maximum number of pairs we can obtain

from this structure is (
2y

2

)
=

2y · (2y − 1)
2

= 22y−1 − 2y−1 ≈ 22y−1. (1.3)

Since we have 2x different structures, approximately 22y−1 · 2x = 22y+x−1 different pairs can

be constructed at most. Note that if we replace one or more of the zeros with ones in the

difference α, the maximum number of pairs that can be obtained becomes exactly 22y+x−1.

This is the case in the attacks that we are going to define in Chapter 3 and Chapter 4.

1.7 Related-Key Impossible Differential Cryptanalysis

In [37], Kelsey et al. introduced related-key differential attacks in which the attacker either

knows or chooses the difference in the keys. However, this is a very strong requirement and

7

this attack scenario does not concern most of the practical applications.

The impossible differential cryptanalysis uses an impossible differential characteristic of r

rounds. The number of rounds that is attacked and the complexity of the attack directly depend

on r and the structure of the characteristic. The attacker desires to find longer characteristics

with lots of indetermined bits. The design of the block cipher determines the upper bound for

this r for the miss in the middle technique. However, a knowledge of difference in the keys

may make it possible to obtain related-key impossible differential characteristics of more

rounds than this upper bound (i.e. there is another upper bound for the case of related keys).

If the key scheduling part of an algorithm contains weaknesses, it may become possible to

attack more rounds with related key impossible differential attacks than impossible differential

attacks.

1.8 Our Contribution and the Structure of the Thesis

HIGHT [2, 3] is a variant of generalized Feistel network block cipher which has become a

standard encryption algorithm in South Korea [3]. Security of HIGHT against known attacks

is investigated in [2] and an impossible differential attack on 18-round HIGHT is found. Lu

also investigated HIGHT’s security in [13, 12] and presented an impossible differential attack

and a related-key impossible differential attack that can be applied to 25 and 28-round HIGHT,

respectively.

In this thesis, we further investigate HIGHT’s security and present an impossible differential

attack on 26-round HIGHT which has a better time complexity than Lu’s 25-round attack

and we also present a related-key impossible differential attack on 31-round HIGHT which is

slightly better than the exhaustive search.

This thesis is organized as follows: In Chapter 2, we first describe the block cipher HIGHT

and then we briefly mention the previous impossible differential and related-key impossible

differential attacks on HIGHT. In Chapter 3, we investigate HIGHT’s security against impos-

sible differential attacks. We first give a 17-round impossible differential characteristic, which

is the highest round impossible differential characteristic we could find, and then present our

impossible differential attack on 26-round HIGHT which uses a 16-round impossible differ-

8

ential characteristic. In Chapter 4, we present our related-key impossible differential attack

on 31-round HIGHT which uses a 22-round related-key impossible differential characteristic.

Finally, we conclude our thesis with Chapter 5.

9

CHAPTER 2

OVERVIEW OF HIGHT

2.1 HIGHT

Lightweight cryptography has become very vital with the emerging needs in sensitive applica-

tions like radio-frequency identification (RFID) systems and sensor networks. For these types

of special purposes, there is a strong demand in designing secure lightweight cryptographic

modules. After the selection of AES, the research on efficient implementation of AES, es-

pecially for such constrained environments, brought special attention in research community.

AES is not suitable for extremely constrained devices and the research on designing and an-

alyzing new lightweight block ciphers that are more efficient than AES on these platforms

poses huge challenges as block ciphers are assumed to be widely used in ubiquitous devices.

For this purpose, several block ciphers are designed as potential candidates such as HIGHT

[2, 3], PRESENT [4], mCrypton [5], SEA [6], CGEN [7], DESL [8] and DESXL [8] (TEA [9]

and XTEA [10] can also be given as lightweight block ciphers which were designed before

AES).

HIGHT, as one of these candidates enjoying the use of a low-resource hardware implemen-

tation, is a 32 round block cipher proposed at Workshop on Cryptographic Hardware and

Embedded Systems (CHES) 2006 by Deukjo Hong et al. [2].

The comparison of the hardware implementation of HIGHT with AES, which is done by the

designers of HIGHT, is given in Table 2.1 which shows that HIGHT can be implemented with

3048 gates and is much faster than the compared implementation of AES.

In a recent study [33], Lim et al. proposed an implementation of HIGHT for an RFID tag

10

Table 2.1: Comparison of the hardware implementations of HIGHT and AES

Algorithm Technology (µm) Area (GEs) throughput (Mbps) Max frequency (MHz)
AES [15] 0.35 3400 9.9 80

HIGHT [2] 0.25 3048 150.6 80

which eliminates the redundant logics and gives more efficient key schedule design. This de-

sign has 2608 gates and it is 13% smaller than the original HIGHT design excluding decryp-

tion block. Moreover this new design shows outstanding results in power and performance.

In [34], Rinne et al. made performance analysis of lightweight block ciphers DESL, HIGHT,

SEA, TEA and XTEA on 8-bit microcontrollers and compared them with AES. They showed

that HIGHT’s performance is better than the others but requires more memory. They also

showed that AES outperforms the others in terms of throughput.

At 27 December 2006, ”64-bit Block Cipher HIGHT” was made a standard encryption al-

gorithm in South Korea [3] by Telecommunications Technology Associations (TTA), South

Korea, with Standardization Number TTAS.KO-12.0040.

2.2 Notation

For the sake of clarity and the parallelism with the previous work [13], we use exactly the same

notation for HIGHT which is provided in Table 2.2. Throughout the paper, it is assumed that

the rounds are numbered from zero and the leftmost bit is the most significant bit in a byte or

a word.

Table 2.2: Notation

⊕ Bitwise logical exclusive OR (XOR)
� Addition modulo 28

≪i Left rotation by i bits
HIGHT-r HIGHT reduced to r-rounds
e j A byte with zeros in all positions except bit j (0 6 j 6 7)
e j,∼ A byte that has zeros in bits 0 to j − 1, a one in bit j and indeterminate values

in bits (j + 1) to 7
e j̄,∼ A byte that has zeros in bits 0 to j and indeterminate values in bits (j + 1) to 7
? An arbitrary byte
Xi, j jth byte of state variable of round i of HIGHT, (0 6 j 6 7, 0 6 i 6 32)
MKi ith Secret key byte of HIGHT
WKi ith Whitening key byte of HIGHT
S Ki ith Subkey byte of HIGHT

11

X X X X X X X

XXXXXXXX

SK SK

X

SK SK

F FF
0 1 0

F
1

i, 6 i, 5 i, 4i, 7 i, 3 i, 2 i, 1 i, 0

i+1, 0i+1, 1i+1, 2i+1, 3i+1, 4i+1, 5i+1, 6i+1, 7

4(i+1)−1 4(i+1)−2 4(i+1)−3 4(i+1)−4

Figure 2.1: ith Round of HIGHT

2.3 Specifications

HIGHT is a 32-round block cipher with 64-bit block size and 128-bit user key that makes use

of an unbalanced Feistel Network of 8 branches at each round. The encryption function starts

with an Initial Transformation (IT) that is applied to plaintexts together with input whitening

keys. After the execution of round function for 32 rounds, in order to obtain the ciphertexts,

a Final Transformation (FT) is applied to the output of the last round together with output

whitening keys. The round function, shown in Figure 2.1, operates on 8 bytes and uses simple

operations such as bitwise XOR, addition modulo 28 and rotations.

Linear subround functions F0 and F1, shown in Figure 2.1, can be described as follows:

F0(x) = (x≪ 1) ⊕ (x≪ 2) ⊕ (x≪ 7)

F1(x) = (x≪ 3) ⊕ (x≪ 4) ⊕ (x≪ 6)

HIGHT works with a 128-bit secret key MK which is treated as 16 bytes, (MK15, . . . ,MK0).

The key schedule of HIGHT uses additional constants to avoid the self similarity in the key

scheduling algorithm which prevents cipher from slide attacks [36]. Input-output whitening

keys and round subkeys are obtained by permuting the 16 bytes of the original key and using

addition with constants. The overall key scheduling can be described as:

For i = 0 to i = 7:
If 0 ≤ i ≤ 3, then WKi = MKi+12
Else, WKi = MKi−4

12

For i = 0 to i = 7:
For j = 0 to j = 7:

S K16i+ j = MK j−i mod 8 � δ16i+ j

For j = 0 to j = 7:
S K16i+ j+8 = MK(j−i mod 8)+8 � δ16i+ j+8

where δ16i+ j and δ16i+ j+8 are public constants produced by a linear feedback shift register

(LFSR). Generation of these constants by an LFSR enhances the randomness of the subkeys.

Connection polynomial of this LFSR is x7 + x3 + 1 ∈ Z2[x] and the initial state is 10110102.

The period of x7 + x3 + 1 is 27 − 1 = 127 since it is a primitive polynomial in Z2[x]. Hence

only δ0 and δ127 are the same.

Table 2.3 shows the relations between the original key and the subkey bytes and it will be

extensively used in this study. Namely, each value in a row represents the obtained whitening

and subkey bytes once the corresponding byte in the first column of the same row is known.

To reduce the memory requirements, only the values of MKs are kept and SKs and WKs are

generated during encryption and decryption.

Table 2.3: Relations Between the Original Key and Whitening Keys and Subkeys

Original Whitening Subkeys
Key Keys

MK15 WK3 S K15 S K24 S K41 S K58 S K75 S K92 S K109 S K126

MK14 WK2 S K14 S K31 S K40 S K57 S K74 S K91 S K108 S K125

MK13 WK1 S K13 S K30 S K47 S K56 S K73 S K90 S K107 S K124

MK12 WK0 S K12 S K29 S K46 S K63 S K72 S K89 S K106 S K123

MK11 - S K11 S K28 S K45 S K62 S K79 S K88 S K105 S K122

MK10 - S K10 S K27 S K44 S K61 S K78 S K95 S K104 S K121

MK9 - S K9 S K26 S K43 S K60 S K77 S K94 S K111 S K120

MK8 - S K8 S K25 S K42 S K59 S K76 S K93 S K110 S K127

MK7 - S K7 S K16 S K33 S K50 S K67 S K84 S K101 S K118

MK6 - S K6 S K23 S K32 S K49 S K66 S K83 S K100 S K117

MK5 - S K5 S K22 S K39 S K48 S K65 S K82 S K99 S K116

MK4 - S K4 S K21 S K38 S K55 S K64 S K81 S K98 S K115

MK3 WK7 S K3 S K20 S K37 S K54 S K71 S K80 S K97 S K114

MK2 WK6 S K2 S K19 S K36 S K53 S K70 S K87 S K96 S K113

MK1 WK5 S K1 S K18 S K35 S K52 S K69 S K86 S K103 S K112

MK0 WK4 S K0 S K17 S K34 S K51 S K68 S K85 S K102 S K119

Let Xi = (Xi,7, . . . , Xi,0) be the input of the ith round and Xi+1 = (Xi+1,7, . . . , Xi+1,0) denote its

output. If we denote plaintexts by P = (P7, .., P0) and ciphertexts by C = (C7, ..,C0), then we

can describe the encryption function as follows:

13

1. Initial Transformation :
X0,7 = P7
X0,6 = P6 ⊕WK3
X0,5 = P5
X0,4 = P4 �WK2
X0,3 = P3
X0,2 = P2 ⊕WK1
X0,1 = P1
X0,0 = P0 �WK0

2. Round Function, for i = 1 to 32:
xi,0 = Xi−1,7 ⊕ (F0(Xi−1,6)� S K4i−1)
xi,1 = Xi−1,0
xi,2 = Xi−1,1 � (F1(Xi−1,0) ⊕ S K4i−4)
xi,3 = Xi−1,2
xi,4 = Xi−1,3 ⊕ (F0(Xi−1,2)� S K4i−3)
xi,5 = Xi−1,4
xi,6 = Xi−1,5 � (F1(Xi−1,4) ⊕ S K4i−2)
xi,7 = Xi−1,6

3. Final Transformation :
C7 = X32,0
C6 = X32,7 ⊕WK7
C5 = X32,6
C4 = X32,5 �WK6
C3 = X32,4
C2 = X32,3 ⊕WK5
C1 = X32,2
C0 = X32,1 �WK4

2.4 Previous Impossible Differential Attacks on HIGHT

The security of HIGHT is investigated in [2] by showing resistance against known attacks

such as differential, linear, truncated differential, boomerang [38], rectangle [39], impossible

differential and related-key variants of these attacks. In [2], the safety margin was shown to

be 13 rounds, as the best attack, which is a related-key boomerang attack, covers 19 rounds

where the impossible differential attack covers 18 rounds of HIGHT.

Recently, three new attacks are proposed by Lu [12, 13] on reduced round HIGHT which

are 25-round impossible differential, 26-round related-key rectangle and 28-round related-

key impossible differential attacks. Last of these attacks was the best attack on HIGHT so

14

far which reduced the safety margin of HIGHT from 13 rounds to 4 rounds. In all of these

attacks, the following two commonly known properties of XOR and modular addition is used.

Property 1: The XOR operation preserves differences. That is, if a ⊕ b = c then (a ⊕ d) ⊕

(b ⊕ d) = c.

Property 2: The modular addition operation preserves the first least significant difference but

other differences may not be preserved. That is, if a ⊕ b = c where the least significant i bits

of c is 0 and i-th bit is 1, then (a� d) ⊕ (b� d) = ei,∼ .

2.4.1 Attack on 18-round HIGHT

In the proposal of HIGHT, designers claim that they investigated all of the possible in-

put differences and found a 14-round impossible differential characteristic which is given

as α → β , γ ← δ where α = (e7, e0,3,5,6,7, 0, 0, 0, 0, 0, 0), β = (e0,∼, ?, ?, ?, ?, ?, ?, ?),

γ = (0, 0, ?, ?, ?, ?, ?, ?) and δ = (0, ?, ?, ?, 0, 0, 0, 0). Details of this characteristic can be found

in Table 2.4 where the bytes which cause the differentials to miss in the middle are denoted

with a gray background.

Although the attack is not explicitly given in the proposal, authors claim that an impossible

differential cryptanalysis of 18-round HIGHT can be done by using this characteristic and the

attack requires 246.8 chosen-plaintexts and 2109.2 HIGHT-18 encryptions.

2.4.2 Attack on 25-round HIGHT

In [12], a 16-round impossible differential characteristic is given as α → β , γ ← δ where

α = (e1,∼, 0, 0, 0, 0, 0, 0, 0), β = (e1,∼, ?, ?, ?, ?, ?, ?, ?), γ = (e0,∼, 0, ?, ?, ?, ?, ?, ?) and δ =

(e0,3,5,6,7, 0, 0, 0, 0, 0, 0, e7). We give this characteristic in detail in Table 2.5 where the bytes

which cause the differentials to miss in the middle are denoted with a gray background.

This characteristic can be used to attack 25-round HIGHT without the initial transformation

and recover the whole secret key with 260 chosen-plaintexts and 2126.78 HIGHT-25 encryp-

tions. The attack procedure is similar to our 26-round impossible differential attack that we

are going to describe at Chapter 3 and hence it is not given here.

15

Table 2.4: 13-Round Impossible Differential Characteristic

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0

1 e7 e0,3,5,6,7 0 0 0 0 0 0
2 e0,3,5,6,7 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 e0,3,5,6,7

4 0 0 0 0 0 ? e0,3,5,6,7 0
5 0 0 0 ? ? e0,∼ 0 0
6 0 ? ? ? e0,∼ 0 0 0
7 ? ? ? e0,∼ 0 0 0 ?
8 ? ? e0,∼ 0 0 ? ? ?
9 ? e0,∼ 0 ? ? ? ? ?
10 e0,∼ ? ? ? ? ? ? ?
10 0 0 ? ? ? ? ? ?
11 0 0 ? ? ? ? ? 0
12 0 0 ? ? ? ? 0 0
13 0 0 ? ? ? 0 0 0
14 0 ? ? ? 0 0 0 0

Table 2.5: 16-Round Impossible Differential Characteristic

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0

1 e1,∼ 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 e1,∼

3 0 0 0 0 0 ? e1,∼ 0
4 0 0 0 ? ? e1,∼ 0 0
5 0 ? ? ? e1,∼ 0 0 0
6 ? ? ? e1,∼ 0 0 0 ?
7 ? ? e1,∼ 0 0 ? ? ?
8 ? e1,∼ 0 ? ? ? ? ?
9 e1,∼ ? ? ? ? ? ? ?
9 e0,∼ 0 ? ? ? ? ? ?
10 0 0 ? ? ? ? ? e0,∼

11 0 0 ? ? ? ? e0,∼ 0
12 0 0 ? ? ? e0,∼ 0 0
13 0 0 ? ? e0,∼ 0 0 0
14 0 0 ? e0,∼ 0 0 0 0
15 0 0 e0,∼ 0 0 0 0 0
16 0 e0,3,5,6,7 0 0 0 0 0 0
17 e0,3,5,6,7 0 0 0 0 0 0 e7

16

2.5 Previous Related-key Impossible Differential Attacks on HIGHT

There are no related-key impossible differential attacks in the proposal of HIGHT and authors

are ”convinced that the key schedule and round function of HIGHT makes related-key attacks

difficult” [2]. The best related-key attack they could find is a 19-round related-key boomerang

attack. However, in [12, 13], Lu presented a 26-round related-key boomerang attack and a

28-round related-key impossible differential attack on HIGHT.

2.5.1 Attack on 28-round HIGHT

In [12], a 19-round related-key impossible differential characteristic which starts at round 7

and ends at round 25 is given as (e7, 0, 0, 0, 0, 0, 0, 0) 9 (0, 0, 0, 0, 0, 0, 0, e1,∼) where the key

difference (∆MK15,∆MK14, . . . ,∆MK0) is (0, 0, 0, 0, 0, e7, 0, . . . , 0). We give this characteris-

tic in detail in Table 2.6 where the bytes which cause the differentials to miss in the middle are

denoted with a light gray background and the subkeys which are affected by the key difference

are denoted with a dark gray background.

This characteristic can be used to attack HIGHT-28 without the initial transformation, which

starts at round 2 and end at round 29. This attack requires 260 chosen plaintexts and 2125.54

HIGHT-28 encryptions. The attack procedure is similar to our 31-round related-key impos-

sible differential attack that we are going to describe at Chapter 4 and hence it is not given

here.

17

Table 2.6: 19-Round Related-key Impossible Differential Characteristic, ∆MK10 = e7

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X6 e7 0 0 0 0 0 0 0 S K27 S K26 S K25 S K24
∆X7 0 0 0 0 0 0 0 0 S K31 S K30 S K29 S K28
∆X8 0 0 0 0 0 0 0 0 S K35 S K34 S K33 S K32
∆X9 0 0 0 0 0 0 0 0 S K39 S K38 S K37 S K36
∆X10 0 0 0 0 0 0 0 0 S K43 S K42 S K41 S K40
∆X11 0 0 0 0 0 0 0 0 S K47 S K46 S K45 S K44
∆X12 0 0 0 0 0 e7 0 0 S K51 S K50 S K49 S K48
∆X13 0 0 0 e0,∼ e7 0 0 0 S K55 S K54 S K53 S K52
∆X14 0 ? e0,∼ e7 0 0 0 0 S K59 S K58 S K57 S K56
∆X15 ? e0,∼ e7 0 0 0 0 ? S K63 S K62 S K61 S K60
∆X16 e0,∼ e7 0 e7 0 ? ? ? S K67 S K66 S K65 S K64
∆X17 e7 e2,∼ e7 ? ? ? ? e0̄,∼ S K71 S K70 S K69 S K68
∆X18 e2,∼ e7 ? ? ? ? e0̄,∼ ? S K75 S K74 S K73 S K72

∆X18 ? ? ? ? ? ? e0,∼ 0 S K75 S K74 S K73 S K72
∆X19 ? ? ? ? ? e0,∼ 0 0 S K79 S K78 S K77 S K76
∆X20 ? ? ? ? e0,∼ 0 0 0 S K83 S K82 S K81 S K80
∆X21 ? ? ? e0,∼ 0 0 0 0 S K87 S K86 S K85 S K84
∆X22 ? ? e0,∼ 0 0 0 0 0 S K91 S K90 S K89 S K88
∆X23 ? e0,∼ 0 0 0 0 0 0 S K95 S K94 S K93 S K92
∆X24 e0,∼ 0 0 0 0 0 0 0 S K99 S K98 S K97 S K96
∆X25 0 0 0 0 0 0 0 e0,∼ S K103 S K102 S K101 S K100

18

CHAPTER 3

IMPOSSIBLE DIFFERENTIAL CRYPTANALYSIS

In this chapter we introduce our impossible differential attack on HIGHT-26 which uses a 16-

round impossible differential characteristic and covers the rounds 0-25. The input whitening

is excluded in our attack as done in [13]. To our knowledge, this is the best attack on HIGHT

among the attacks that does not use related-keys.

3.1 17-round Impossible Differential Characteristic

Because of the structure of HIGHT, one might observe that a given difference becomes unde-

termined after at most 10 rounds of encryption and there are only a few number of differences

that does not become undetermined after 9 rounds of encryption. One example is the differ-

ence (e7, e0,3,5,6,7, 0, 0, 0, 0, 0, 0) which is shown in detail in Table 2.4.

Therefore we can use two 9-round truncated differentials which do not meet in the middle

and obtain the theoretical highest round impossible differential characteristic for the miss in

the middle technique which is of 18 rounds. However, we checked every 9-round differential

(which holds with probability 1) and observed that when two of them is combined, they do

not miss in the middle.

Hence theoretical 18-round impossible differential characteristic is not possible in practice

and Lu [12] uses a 16-round impossible differential characteristic (which is given in detail in

Table 2.4) in his 25-round impossible differential attack. Thus, we tried to find a 17-round

impossible differential characteristic in order to attack more rounds of HIGHT and obtained a

17-round impossible differential characteristic which is shown in detail in Table 3.1 where the

bytes which cause the differentials to miss in the middle are denoted with a gray background.

19

Table 3.1: 17-Round Impossible Differential Characteristic

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0

1 e7 e0,3,5,6,7 0 0 0 0 0 0
2 e0,3,5,6,7 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 e0,3,5,6,7

4 0 0 0 0 0 ? e0,3,5,6,7 0
5 0 0 0 ? ? e0,∼ 0 0
6 0 ? ? ? e0,∼ 0 0 0
7 ? ? ? e0,∼ 0 0 0 ?
8 ? ? e0,∼ 0 0 ? ? ?
9 ? e0,∼ 0 ? ? ? ? ?
10 e0,∼ ? ? ? ? ? ? ?
10 e0̄,∼ e7 ? ? ? ? ? ?
11 e7 0 ? ? ? ? ? e0,∼

12 0 0 ? ? ? ? e0,∼ e7

13 0 0 ? ? ? e0,∼ e7 0
14 0 0 ? ? e0,∼ e7 0 0
15 0 0 ? e2,∼ e7 0 0 0
16 0 0 e2,∼ e7 0 0 0 0
17 0 0 e7 0 0 0 0 0
18 0 e7 0 0 0 0 0 0

Here we explain why the impossible differential characteristic given in Table 3.1 holds with

probability 1. We start from the 1st row of Table 3.1 and reach to 10th row by noting the

behaviour of the difference. Since F0(e0,3,5,6,7) = e7, it cancels ∆X1,7, so ∆X2,0 becomes 0.

At 5th row, e0,3,5,6,7 becomes e0,∼ because of the modular addition and Property 2. Other

steps follow similarly. Hence with the given difference we conclude that after 9 rounds of

encryption, the least significant bit of ∆X10,7 has to be 1.

Now we start from the 18th row of the Table 3.1 and note the behaviour of the given difference

by going upwards, in other words, by decrypting. When we go upwards from 17th row to 16th

row, the e7 difference at ∆X17,5 goes to ∆X16,4. We know that F1(e7) = e2,3,5 which becomes

e2,∼ after modular addition but ∆X17,6 is 0, so ∆X16,5 must be e2,∼ to cancel out F1(e7). Other

steps follow similarly. Hence with the given difference we conclude that after 8 rounds of

decryption, the least significant bit of ∆X10,7 has to be 0.

Since both of the differentials hold with probability 1, we conclude that if two messages

have the difference (e7, e0,3,5,6,7, 0, 0, 0, 0, 0, 0), after 17 rounds of encryption, the difference

between them can not be (0, e7, 0, 0, 0, 0, 0, 0). In other words, such a characteristic is impos-

20

sible to hold.

With this impossible differential characteristic, we can attack 26 rounds of HIGHT. However,

the time complexity of this attack is very close to the exhaustive search. This is due to the

fact that the above impossible differential characteristic requires too many filtering conditions

to hold and these conditions eliminate too many pairs and at the end, remaining pairs are not

enough to eliminate most of the wrong keys. We overcome this problem by eliminating the

first row of the Table 3.1 and replacing e0,3,5,6,7 by e0,∼. Hence our characteristic reduces to

16 rounds but as we will see in the following sections the complexity of the attack becomes

much lower with this characteristic.

The 16-round impossible differential characteristic that we are going to use can be shown as

(e0,∼, 0, 0, 0, 0, 0, 0, 0) 9 (0, e7, 0, 0, 0, 0, 0, 0). (3.1)

Because of the symmetry in the round function of HIGHT, another 16-round impossible dif-

ferential can be obtained as

(0, 0, 0, 0, e0,∼, 0, 0, 0) 9 (0, 0, 0, 0, 0, e7, 0, 0). (3.2)

3.2 26-round Path

Now we have constructed our 16-round impossible differential characteristic and we will use

it to attack 26-rounds of HIGHT. We extend our 16-round impossible differential character-

istic to a 26-round path by adding 5 rounds to above of the characteristic and 5 rounds to

below of the characteristic. This path is shown in Table 3.2 where the bytes which cause the

differentials to miss in the middle are denoted with a light gray background and the subkeys

and whitening keys that are guessed during the attack process are denoted with a dark gray

background.

By using this 26-round path, we will eliminate a key if a plaintext-ciphertext pair satisfies

the 16-round impossible differential characteristic under that key. In order to check whether

the characteristic is satisfied or not, we must partially encrypt the plaintext pairs and partially

decrypt the corresponding ciphertext pairs. Hence, during these processes we need to guess

corresponding subkey values and this is done by guessing the corresponding secret key bytes.

21

We want to perform an attack which requires minimum number of secret key byte guesses

because it directly effects the time and memory complexity of the attack.

Since different subkeys are used in each round, which 26 rounds of HIGHT we are going to

attack becomes important. By writing a simple programming code we checked that if the 26-

round path covers the first 26 rounds of HIGHT, we need to guess 112 bits of the key, namely

(MK15,MK14,MK11, . . . ,MK0) and this is one of the lowest possible. The 26-round path is

given in Table 3.2. This attack covers the rounds 0-25 and excludes the input whitening as

done in [13].

3.3 Data Collection and Memory

1. We choose 213 structures of 248 plaintexts Pi each where the bytes (1, 0) have fixed

values, bytes (7, 6, 5, 4, 3) and most significant 7 bits of the byte (2) take all possible

values.

• Let 247 of the plaintexts have the bit 0 as their least significant bit of byte (2) and

remaining 247 plaintexts have 1 in that place. If we construct pairs of plaintext

from these two sets of plaintexts, such a structure of plaintexts propose exactly

247 · 247 = 294 plaintext pairs and every pair will have the difference (?, ?, ?, ?, ?,

e0,∼, 0, 0). Since we have 213 structures, we get 294 · 213 = 2107 pairs in total.

2. We obtain all the ciphertexts Ci of the plaintexts Pi and choose only the ciphertext pairs

satisfying the difference (?, ?, ?, ?, e0̄,∼, e7, 0, 0).

• This step can be done by inserting all the ciphertexts into a hash table indexed by

expected inactive bits and choosing the colliding pairs which satisfy the required

difference. There is 25-bit filtering condition over the ciphertext pairs. Therefore,

2107/225 = 282 pairs remain.

3. This attack will be on 112 bits of the secret key, namely (MK15, MK14, MK11, . . . ,

MK0) and since we are going to eliminate wrong keys, we have to store them. One

trivial way of doing this is by forming an array of bits with size 2112 and initialize them

to 0. The r-th element of the array represents the key whose integer value is r. When a

key is eliminated, we will convert its corresponding value in the array to 1.

22

Table 3.2: 26-Round Impossible Differential Path

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X0 ? ? ? ? ? e0,∼ 0 0 S K3 S K2 S K1 S K0
∆X1 ? ? ? ? e0,∼ 0 0 0 S K7 S K6 S K5 S K4
∆X2 ? ? ? e0,∼ 0 0 0 0 S K11 S K10 S K9 S K8
∆X3 ? ? e0,∼ 0 0 0 0 0 S K15 S K14 S K13 S K12
∆X4 ? e0,∼ 0 0 0 0 0 0 S K19 S K18 S K17 S K16

∆X5 e0,∼ 0 0 0 0 0 0 0 S K23 S K22 S K21 S K20
∆X6 0 0 0 0 0 0 0 e0,∼ S K27 S K26 S K25 S K24
∆X7 0 0 0 0 0 ? e0,∼ 0 S K31 S K30 S K29 S K28
∆X8 0 0 0 ? ? e0,∼ 0 0 S K35 S K34 S K33 S K32
∆X9 0 ? ? ? e0,∼ 0 0 0 S K39 S K38 S K37 S K36
∆X10 ? ? ? e0,∼ 0 0 0 ? S K43 S K42 S K41 S K40
∆X11 ? ? e0,∼ 0 0 ? ? ? S K47 S K46 S K45 S K44
∆X12 ? e0,∼ 0 ? ? ? ? ? S K51 S K50 S K49 S K48
∆X13 e0,∼ ? ? ? ? ? ? ? S K55 S K54 S K53 S K52

∆X13 e0̄,∼ e7 ? ? ? ? ? ? S K55 S K54 S K53 S K52
∆X14 e7 0 ? ? ? ? ? e0,∼ S K59 S K58 S K57 S K56
∆X15 0 0 ? ? ? ? e0,∼ e7 S K63 S K62 S K61 S K60
∆X16 0 0 ? ? ? e0,∼ e7 0 S K67 S K66 S K65 S K64
∆X17 0 0 ? ? e0,∼ e7 0 0 S K71 S K70 S K69 S K68
∆X18 0 0 ? e2,∼ e7 0 0 0 S K75 S K74 S K73 S K72
∆X19 0 0 e2,∼ e7 0 0 0 0 S K79 S K78 S K77 S K76
∆X20 0 0 e7 0 0 0 0 0 S K83 S K82 S K81 S K80
∆X21 0 e7 0 0 0 0 0 0 S K87 S K86 S K85 S K84

∆X22 e7 0 0 0 0 0 0 e0,∼ S K91 S K90 S K89 S K88
∆X23 0 0 0 0 0 ? e0,∼ e7 S K95 S K94 S K93 S K92
∆X24 0 0 0 ? ? e0,∼ e7 0 S K99 S K98 S K97 S K96
∆X25 0 ? ? ? e0,∼ e7 0 0 S K103 S K102 S K101 S K100
∆X26 ? ? ? e0̄,∼ e7 0 0 ? WK7 WK6 WK5 WK4
FT ? ? ? ? e0̄,∼ e7 0 0

23

3.4 Impossible Differential Attack on HIGHT-26

Attack procedure is to take a pair and perform partial encryptions and decryptions by guessing

the necessary key bytes and eliminating them if they satisfy the impossible differential char-

acteristic. The following steps are applied to every pair that we obtained in the data collection

part.

1. We guess MK3 and get S K3 (actually by guessing MK3, we get WK7, S K3, S K20,

S K37, S K54, S K71, S K80, S K97 and S K114, which can be checked from Table 2.3).

Since we know the values of the plaintexts, we obtain the bytes (7, 0) of X1 by partially

encrypting every plaintexts’ bytes (7, 6) of X0 with S K3. In order to satisfy the impossi-

ble differential characteristic, the obtained values of the pairs must have the difference

(?, 0). We keep the pairs satisfying this condition. Since the difference (?, 0) contains

8-bit filtering condition, 28 of the pairs are eliminated in this step. Hence 282/28 = 274

pairs remain.

2. We guess MK1 and obtain the bytes (7, 6) of X25 by partially decrypting the bytes (7, 0)

of X26 with WK7 and S K103 for all remaining pairs. We keep the pairs having the

difference (0, ?) at the bytes (7, 6) of X25. It contains 8-bit filtering condition so 266

pairs remain.

3. We guess MK2 and obtain the bytes (6, 5) of X1 by partially encrypting the bytes (5, 4)

of X0 with S K2 for all remaining pairs. There are no filtering conditions in this step

since the required difference is (?, ?).

4. We guess MK7 and obtain the bytes (7, 0) of X2 by partially encrypting the bytes (7, 6)

of X1 with S K7 for all remaining pairs. We keep the pairs having the difference (?, 0) at

the bytes (7, 0) of X2. It contains 8-bit filtering condition so 258 pairs remain.

5. We guess MK0 and obtain the bytes (5, 4) of X25 by partially decrypting the bytes (6, 5)

of X26 with WK6 and S K102 for all remaining pairs. There are no filtering conditions in

this step.

6. We guess MK4 and obtain the bytes (5, 4) of X24 by partially decrypting the bytes (6, 5)

of X25 with S K98 for all remaining pairs. We keep the pairs having the difference (0, ?)

at the bytes (5, 4) of X24. It contains 8-bit filtering condition so 250 pairs remain.

24

7. We obtain the bytes (3, 2) of X25 by partially decrypting the bytes (4, 3) of X26 with WK5

and S K101 for all remaining pairs. Since we already guessed the secret key bytes MK1

and MK7, we know the values of WK5 and S K101. There are no filtering conditions in

this step.

8. We obtain the bytes (3, 2) of X24 by partially decrypting the bytes (4, 3) of X25 with

S K97 for all remaining pairs. Since we already guessed the secret key byte MK3, we

know the value of S K97. There are no filtering conditions in this step.

9. We guess MK8 and obtain the bytes (3, 2) of X23 by partially decrypting (4, 3) of X24

with S K93 for all remaining pairs. We keep the pairs having the difference (0, ?) at the

bytes (3, 2) of X23. It contains 8-bit filtering condition so 242 pairs remain.

10. We obtain the bytes (4, 3) of X1 by partially encrypting (3, 2) of X0 with S K1 for all

remaining pairs. Since we already guessed the secret key byte MK1, we know the value

of S K1. There are no filtering conditions in this step.

11. We guess MK6 and obtain the bytes (6, 5) of X2 by partially encrypting (5, 4) of X1 with

S K6 for all remaining pairs. There are no filtering conditions in this step.

12. We guess MK11 and obtain the bytes (7, 0) of X3 by partially encrypting (7, 6) of X2

with S K11 for all remaining pairs. We keep the pairs having the difference (?, 0) at the

bytes (7, 0) of X3. It contains 8-bit filtering condition so 234 pairs remain.

13. We obtain the bytes (1, 0) of X25 by partially decrypting the bytes (2, 1) of X26 with WK4

and S K100 for all remaining pairs. Since we already guessed the secret key bytes MK0

and MK6, we know the values of WK4 and S K100. There are no filtering conditions in

this step.

14. We obtain the bytes (1, 0) of X24 by partially decrypting the bytes (2, 1) of X25 with

S K96 for all remaining pairs. Since we already guessed the secret key byte MK2, we

know the value of S K96. There are no filtering conditions in this step.

15. We guess MK15 and obtain the bytes (1, 0) of X23 by partially decrypting (2, 1) of X24

with S K92 for all remaining pairs. There are no filtering conditions in this step.

16. We obtain the bytes (1, 0) of X22 by partially decrypting the bytes (2, 1) of X23 with

S K88 for all remaining pairs. Since we already guessed the secret key byte MK11, we

25

know the value of S K88. We keep the pairs having the difference (0, e0,∼) at the bytes

(1, 0) of X22. It contains 8-bit filtering condition so 226 pairs remain.

17. We obtain the bytes (2, 1) of X1 by partially encrypting (1, 0) of X0 with S K0 for all

remaining pairs. Since we already guessed the secret key byte MK0, we know the value

of S K0. There are no filtering conditions in this step.

18. We guess MK5 and obtain the bytes (4, 3) of X2 by partially encrypting (3, 2) of X1 with

S K5 for all remaining pairs. There are no filtering conditions in this step.

19. We guess MK10 and obtain the bytes (6, 5) of X3 by partially encrypting (5, 4) of X2

with S K10 for all remaining pairs. There are no filtering conditions in this step.

20. We obtain the bytes (7, 0) of X4 by partially encrypting (7, 6) of X3 with S K15 for all

remaining pairs. Since we already guessed the secret key byte MK15, we know the

value of S K15. We keep the pairs having the difference (?, 0) at the bytes (7, 0) of X4. It

contains 8-bit filtering condition so 218 pairs remain.

21. We obtain the bytes (7, 6) of X24 by partially decrypting the bytes (7, 0) of X25 with

S K99 for all remaining pairs. Since we already guessed the secret key byte MK5, we

know the value of S K99. There are no filtering conditions in this step.

22. We obtain the bytes (7, 6) of X23 by partially decrypting the bytes (7, 0) of X24 with

S K95 for all remaining pairs. Since we already guessed the secret key byte MK10, we

know the value of S K95. There are no filtering conditions in this step.

23. We guess MK14 and obtain the bytes (7, 6) of X22 by partially decrypting (7, 0) of X23

with S K91 for all remaining pairs. There are no filtering conditions in this step.

24. We obtain the bytes (7, 6) of X21 by partially decrypting the bytes (7, 0) of X22 with

S K87 for all remaining pairs. Since we already guessed the secret key byte MK2, we

know the value of S K87. We keep the pairs having the difference (0, e7) at the bytes

(7, 6) of X21. It contains 7-bit filtering condition because F0(e7) becomes e0,∼ after

modular addition and byte (7) of X21 becomes e0,∼⊕ e0,∼ = e0̄,∼. So the least significant

bit is always 0. Thus the filtering conditions are on the remaining 7 bits of byte (7) of

X21. Hence 211 pairs remain.

26

25. We obtain the bytes (2, 1) of X2 by partially encrypting (1, 0) of X1 with S K4 for all

remaining pairs. Since we already guessed the secret key byte MK4, we know the value

of S K4. There are no filtering conditions in this step.

26. We guess MK9 and obtain the bytes (4, 3) of X3 by partially encrypting (3, 2) of X2 with

S K9 for all remaining pairs. There are no filtering conditions in this step.

27. We obtain the bytes (6, 5) of X4 by partially encrypting (5, 4) of X3 with S K14 for all

remaining pairs. Since we already guessed the secret key byte MK14, we know the

value of S K14. There are no filtering conditions in this step.

28. We obtain the bytes (7, 0) of X5 by partially encrypting (7, 6) of X4 with S K19 for all

remaining pairs. Since we already guessed the secret key byte MK2, we know the value

of S K19. We check if the obtained difference is (e0,∼, 0) at the bytes (7, 0) of X5. If a

pair satisfies this condition, we eliminate the corresponding key. Since there is an 8-bit

condition, every pair eliminates 2−8 of the keys. Therefore after the first pair, there

remain 2112 − 2104 = 2112 · (1 − 2−8) keys. After the second pair, it is expected to have

2112 · (1 − 2−8) − 2112 · (1 − 2−8) · 2−8 = 2112 · (1 − 2−8)2 many keys. Following that

manner, after the last pair, we have 2112 · (1 − 2−8)211
≈ 2100.46 remaining keys.

29. Now we reduced the number of possible keys from 2112 to 2100.46. For all these re-

maining keys, we guess the remaining 16 bits of the key, that is MK13 and MK12, and

exhaustively search for the correct one. Hence we check 2100.46+16 = 2116.46 keys in

this step. This is done by encrypting one plaintext with the guessed key and checking

whether the corresponding ciphertext is obtained. Sometimes with a wrong key, we

might observe that a plaintext is encrypted to the corresponding ciphertext. Such a situ-

ation is called a false alarm and its probability is 2−64 since the block size of HIGHT is

64 bits. To avoid false alarms, if a correct ciphertext is obtained with a key, an another

plaintext-ciphertext pair should be checked with the same key. If the correct ciphertext

is obtained again, we conclude that it is the correct secret key because the probability

of obtaining the correct ciphertexts two times with a wrong key is (2−64)2 = 2−128 and

expected number of wrong keys is 2−128 · 2116.46 = 2−11.54.

These steps are summarized in Table 3.3.

27

Table 3.3: 26-Round impossible differential attack

Guess Use Obtain Check Condition Remaining
Key Byte Difference (In terms of bits) Pairs

1 MK3 S K3 (7, 0) of X1 (?, 0) 8 274

2 MK1 WK7, S K103 (7, 6) of X25 (0, ?) 8 266

3 MK2 S K2 (6, 5) of X1 - - 266

4 MK7 S K7 (7, 0) of X2 (?, 0) 8 258

5 MK0 WK6, S K102 (5, 4) of X25 - - 258

6 MK4 S K98 (5, 4) of X24 (0, ?) 8 250

7 - WK5, S K101 (3, 2) of X25 - - 250

8 - S K97 (3, 2) of X24 - - 250

9 MK8 S K93 (3, 2) of X23 (0, ?) 8 242

10 - S K1 (4, 3) of X1 - - 242

11 MK6 S K6 (6, 5) of X2 - - 242

12 MK11 S K11 (7, 0) of X3 (?, 0) 8 234

13 - WK4, S K100 (1, 0) of X25 - - 234

14 - S K96 (1, 0) of X24 - - 234

15 MK15 S K92 (1, 0) of X23 - - 234

16 - S K88 (1, 0) of X22 (0, e0,∼) 8 226

17 - S K0 (2, 1) of X1 - - 226

18 MK5 S K5 (4, 3) of X2 - - 226

19 MK10 S K10 (6, 5) of X3 - - 226

20 - S K15 (7, 0) of X4 (?, 0) 8 218

21 - S K99 (7, 6) of X24 - - 218

22 - S K95 (7, 6) of X23 - - 218

23 MK14 S K91 (7, 6) of X22 - - 218

24 - S K87 (7, 6) of X21 (0, e7) 7 211

25 - S K4 (2, 1) of X2 - - 211

26 MK9 S K9 (4, 3) of X3 - - 211

27 - S K14 (6, 5) of X4 - - 211

28 - S K19 (7, 0) of X5 (e0,∼, 0) 8 -

28

3.5 Complexity of the Attack

In this section we give the data, memory and time complexities of our 26-round impossible

differential attack on HIGHT.

3.5.1 Data Complexity

In order to apply the attack on HIGHT-26, we require 213 structures of 248 plaintexts. We

divided these 248 plaintexts into two sets having 247 elements and if we take one element

from both of the sets, we want their difference to be (?, ?, ?, ?, ?, e0,∼, 0, 0). Hence the data

complexity of this attack is 213 · 248 = 261 chosen-plaintexts.

3.5.2 Memory Complexity

At 28th step of the attack, if a pair satisfies the guessed key, it is eliminated. At the end of

the attack, we have to know which keys are eliminated and which are not. Since the attack is

on 112 bits of the secret key, namely (MK15,MK14,MK11, . . . ,MK0), at the beginning of the

attack we form an array of bits with size 2112 and initialize them to 0. The r-th element of the

array represents the key whose integer value is r. When a key is eliminated, its corresponding

value is converted to 1. Such an array requires 2112 bits which is 2109 bytes. During the attack,

some values must be stored in the memory too but their size is negligible when compared to

this array. Hence the memory complexity of the attack is 2109 bytes.

3.5.3 Time Complexity

We are going to use the abbreviation HE for reduced round HIGHT encryptions. In the first

step, we guess MK3 which can take 28 different values. We have 282 pairs and we partially

encrypt all of them with the guessed key. Hence we do 2 · 28 · 282 partial encryptions in the

first step (multiplication by 2 comes from the fact that we are working with pairs). However,

we should compare the time complexity of the attack with exhaustive search which is 2128

HIGHT-26 encryptions. In this step we encrypted only 1/4th of a round of HIGHT. Hence

the time complexity of the first step is 2 · 28 · 282 · 1
4 ·

1
26 ≈ 284.30 HIGHT-26 encryptions.

29

In the second step , we guess MK1 so the number of guessed key bits becomes 16. In the first

step 28 of the pairs are eliminated and now 274 pairs remain. Hence the time complexity of

the second step is 2 · 216 · 274 · 1
4 ·

1
26 ≈ 284.30 HIGHT-26 encryptions. The time complexities

of the first 27 steps are calculated in a similar way and they are given in Table 3.4.

In step 28, a pair eliminates 28 of the keys and once a key is eliminated, there is no need to

use that key with other pairs. Hence for the first pair, we check 2112 keys, for the second pair

we check 2112−2104 = 2112 · (1−2−8) keys and so on and so forth. Thus the complexity of this

step is 2 · 2112
{
1 + (1 − 2−8) + . . . + (1 − 2−8)211−1

}
· 1

4 ·
1
26 ≈ 2114.30 HIGHT-26 encryptions.

In step 29, we have approximately 2100.46 key candidates which covers the 112 bits of the

secret key. For all these keys, we guess the remaining 16 bits of the key and check whether the

obtained 128 bit key is correct or not. Hence the complexity of this step is 2100.46+16 = 2116.46

HIGHT-26 encryptions.

Time complexity of each step is given in Table 3.4. The total time complexity of the attack is

the sum of the time complexities of each step, which is 2119.53 HIGHT-26 encryptions.

3.6 Summary

In this chapter we introduced our impossible differential attack on HIGHT-26 which uses a

16-round impossible differential characteristic. To our knowledge, this is the best attack on

HIGHT among the attacks that does not use related-keys.

Impossible differential cryptanalysis results are given in Table 3.5. Our attack has lower time

complexity than Lu’s attack and requires less memory since we guessed 112 bits of the key

instead of 120 bits during the attack.

30

Table 3.4: Time Complexities of Each Step of the Attack

Step Complexity (HE)
1 2 · 28 · 282 · 1

4 ·
1

26 ≈ 284.30

2 2 · 216 · 274 · 1
4 ·

1
26 ≈ 284.30

3 2 · 224 · 266 · 1
4 ·

1
26 ≈ 284.30

4 2 · 232 · 266 · 1
4 ·

1
26 ≈ 292.30

5 2 · 240 · 258 · 1
4 ·

1
26 ≈ 292.30

6 2 · 248 · 258 · 1
4 ·

1
26 ≈ 2100.30

7 2 · 248 · 250 · 1
4 ·

1
26 ≈ 292.30

8 2 · 248 · 250 · 1
4 ·

1
26 ≈ 292.30

9 2 · 256 · 250 · 1
4 ·

1
26 ≈ 2100.30

10 2 · 256 · 250 · 1
4 ·

1
26 ≈ 292.30

11 2 · 264 · 242 · 1
4 ·

1
26 ≈ 2100.30

12 2 · 272 · 242 · 1
4 ·

1
26 ≈ 2108.30

13 2 · 272 · 234 · 1
4 ·

1
26 ≈ 2100.30

14 2 · 272 · 234 · 1
4 ·

1
26 ≈ 2100.30

15 2 · 280 · 234 · 1
4 ·

1
26 ≈ 2108.30

16 2 · 280 · 234 · 1
4 ·

1
26 ≈ 2108.30

17 2 · 280 · 226 · 1
4 ·

1
26 ≈ 2100.30

18 2 · 288 · 226 · 1
4 ·

1
26 ≈ 2108.30

19 2 · 296 · 226 · 1
4 ·

1
26 ≈ 2116.30

20 2 · 296 · 226 · 1
4 ·

1
26 ≈ 2116.30

21 2 · 296 · 218 · 1
4 ·

1
26 ≈ 2108.30

22 2 · 296 · 218 · 1
4 ·

1
26 ≈ 2108.30

23 2 · 2104 · 218 · 1
4 ·

1
26 ≈ 2116.30

24 2 · 2104 · 218 · 1
4 ·

1
26 ≈ 2116.30

25 2 · 2104 · 211 · 1
4 ·

1
26 ≈ 2109.30

26 2 · 2112 · 211 · 1
4 ·

1
26 ≈ 2117.30

27 2 · 2112 · 211 · 1
4 ·

1
26 ≈ 2117.30

28 2 · 2112
{
1 + (1 − 2−8) + . . . + (1 − 2−8)211−1

}
· 1

4 ·
1

26 ≈ 2114.30

29 2100.46+16 = 2116.46

Total ≈ 2119.53

Table 3.5: Summary of the impossible differential attacks on HIGHT

Rounds Key Data Time Memory Reference
Size Complexity Complexity Complexity

18 128 246.8 CP 2109.2 HE not specified [2]
25 128 260 CP 2126.78 HE not specified [12]
26 128 261 CP 2119.53 HE 2109 bytes Chapter 3

31

CHAPTER 4

RELATED-KEY IMPOSSIBLE DIFFERENTIAL

CRYPTANALYSIS

In this chapter we introduce our related-key impossible differential attack on HIGHT-31 that

uses a 22-round impossible differential characteristic and covers the rounds 0-30. The input

whitening is excluded in our attack as done in [13]. To our knowledge, this is the best attack

on HIGHT.

4.1 22-round Related-key Impossible Differential Characteristic

In Chapter 3 we showed that because of the Feistel-like structure of HIGHT, theoretically the

highest round possible impossible differential characteristic is 18 rounds. However, we can

increase this number by using related-keys. Idea is to give a difference to a secret key which

would result in differences at certain subkeys and give the same difference to pairs so that they

cancel out. This cancellation results in a few rounds in which pairs have no difference at all,

until another difference comes from another affected subkey.

As described at Chapter 2, subkeys are obtained by modular addition of secret key bytes and

some constants. Because of the modular addition, we will assume that a secret key byte has

the difference e7 so that the corresponding subkeys have also the same difference. Otherwise

some bits of the differences of the subkeys would be undetermined which would prevent us

to obtain differential characteristics that hold with probability 1. A difference in a secret key

byte effects 8 subkeys and at most 1 whitening key which are given in Table 2.3.

We gave the difference e7 to every 16 secret key byte and tried to obtain the highest round

32

Table 4.1: 22-Round Related-key Impossible Differential Characteristic, ∆MK9 = e7

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X6 0 0 e7 0 0 0 0 0 S K27 S K26 S K25 S K24
∆X7 0 0 0 0 0 0 0 0 S K31 S K30 S K29 S K28
∆X8 0 0 0 0 0 0 0 0 S K35 S K34 S K33 S K32
∆X9 0 0 0 0 0 0 0 0 S K39 S K38 S K37 S K36
∆X10 0 0 0 0 0 0 0 0 S K43 S K42 S K41 S K40
∆X11 0 0 0 0 0 0 0 e7 S K47 S K46 S K45 S K44
∆X12 0 0 0 0 0 e2,∼ e7 0 S K51 S K50 S K49 S K48
∆X13 0 0 0 ? e2,∼ e7 0 0 S K55 S K54 S K53 S K52
∆X14 0 ? ? e0,∼ e7 0 0 0 S K59 S K58 S K57 S K56
∆X15 ? ? e0,∼ e7 0 0 0 ? S K63 S K62 S K61 S K60
∆X16 ? e0,∼ e7 0 0 ? ? ? S K67 S K66 S K65 S K64
∆X17 e0,∼ e7 0 ? ? ? ? ? S K71 S K70 S K69 S K68
∆X18 e7 ? ? ? ? ? ? e0̄,∼ S K75 S K74 S K73 S K72

∆X18 0 0 ? ? ? ? e0̄,∼ e7 S K75 S K74 S K73 S K72
∆X19 0 0 ? ? ? e0,∼ e7 0 S K79 S K78 S K77 S K76
∆X20 0 0 ? ? e0,∼ e7 0 0 S K83 S K82 S K81 S K80
∆X21 0 0 ? e2,∼ e7 0 0 0 S K87 S K86 S K85 S K84
∆X22 0 0 e2,∼ e7 0 0 0 0 S K91 S K90 S K89 S K88
∆X23 0 0 e7 0 0 0 0 0 S K95 S K94 S K93 S K92
∆X24 0 0 0 0 0 0 0 0 S K99 S K98 S K97 S K96
∆X25 0 0 0 0 0 0 0 0 S K103 S K102 S K101 S K100
∆X26 0 0 0 0 0 0 0 0 S K107 S K106 S K105 S K104
∆X27 0 0 0 0 0 0 0 0 S K111 S K110 S K109 S K108
∆X28 0 0 0 0 0 0 0 e7 S K115 S K114 S K113 S K112

related-key impossible differential characteristic by giving the difference e7 to pairs from

above and belove and cancel them with subkey difference. We observed that the highest

round characteristic that can be obtained with this method is 22 rounds and it can be done by

giving the difference e7 to either MK15 or MK9.

In our 31-round related key impossible differential attack, we gave difference to MK15 and it

will be shown in detail in the next section. The 22-round related key impossible differential

characteristic which is obtained by giving the difference e7 to MK9, which affects S K9, S K26,

S K43, S K60, S K77, S K94, S K111 and S K120, is shown in Table 4.1 where the bytes which

cause the differentials to miss in the middle are denoted with a light gray background and the

subkeys which are affected by the key difference are denoted with a dark gray background.

4.2 31-round Path

We obtained a 22-round related-key impossible differential characteristic by giving the dif-

ference e7 to MK15, which also gives the same difference to WK3, S K15, S K24, S K41, S K58,

S K75, S K92, S K109 and S K126. We extend this characteristic to a 31-round related-key im-

possible differential path by adding 6 rounds to above of the characteristic and 3 rounds to

33

below of the characteristic. This path is shown in Table 4.2 where the bytes which cause the

differentials to miss in the middle are denoted with a light gray background and the subkeys

which are affected by the key difference are denoted with a dark gray background.

A similar 31-round related-key impossible differential path can be obtained by extending

the 22-round related-key impossible differential characteristic that is constructed by the key

difference e7 in MK9. The steps and the complexity of such an attack is similar to the one that

we are going to define in the following sections.

4.3 Data Collection

1. We choose 215 structures of 249 plaintexts Pi each where the byte (2) and the least

significant seven bits of the byte (3) are fixed to certain values. The bytes (7, 6, 5, 1, 0)

and the most significant seven bits of the byte (4) contain every possible values (247 of

these plaintexts have 1 in their first and the seventh bit of their bytes (4, 3) respectively

and 247 of them have 0 at these places).

• One structure of chosen plaintexts proposes exactly 294 pairs and we obtain 2109

pairs in total. If we change the structure type as 247 plaintexts having 0 as the least

significant bit of byte (4) and 1 as the most significant bit of byte (3) and similarly

247 plaintexts having 1 as the least significant bit of byte (4) and 0 as the most

significant bit of byte (3), these structures also proposes 294 pairs. We choose 215

such structures and obtain 2110 plaintext pairs in total.

2. We obtain all the ciphertexts Ci of the plaintexts Pi encrypted with K1 and ciphertext

Ci′ of the plaintexts Pi encrypted with K2 where K1 ⊕ K2 = (e7, 0, . . . , 0). We choose

only the ciphertext pairs (Ci,C j′) satisfying the difference (e0,∼, e7, 0, 0, 0, 0, ?, ?).

• This step can be done by inserting all the ciphertexts into a hash table indexed by

expected inactive bits and choosing the colliding pairs which satisfy the required

difference. There is 41-bit filtering condition over the ciphertext pairs. Therefore

269 pairs remain.

3. This attack will be on 120 bits of the secret key, namely (MK15, MK14, MK12, . . . ,

MK0) and since we are going to eliminate wrong keys, we have to store them. One

trivial way of doing this is by forming an array of bits with size 2120 and initialize them

34

Table 4.2: 31-Round Related-Key Impossible Differential

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X0 ? ? ? e0,∼ e7 0 ? ? S K3 S K2 S K1 S K0
∆X1 ? ? e0,∼ e7 0 0 ? ? S K7 S K6 S K5 S K4
∆X2 ? e0,∼ e7 0 0 0 ? ? S K11 S K10 S K9 S K8
∆X3 e0,∼ e7 0 0 0 0 ? ? S K15 S K14 S K13 S K12
∆X4 e7 0 0 0 0 0 ? e2,∼ S K19 S K18 S K17 S K16
∆X5 0 0 0 0 0 0 e2,∼ e7 S K23 S K22 S K21 S K20

∆X6 0 0 0 0 0 0 e7 0 S K27 S K26 S K25 S K24
∆X7 0 0 0 0 0 0 0 0 S K31 S K30 S K29 S K28
∆X8 0 0 0 0 0 0 0 0 S K35 S K34 S K33 S K32
∆X9 0 0 0 0 0 0 0 0 S K39 S K38 S K37 S K36
∆X10 0 0 0 0 0 0 0 0 S K43 S K42 S K41 S K40
∆X11 0 0 0 e7 0 0 0 0 S K47 S K46 S K45 S K44
∆X12 0 e2,∼ e7 0 0 0 0 0 S K51 S K50 S K49 S K48
∆X13 e2,∼ e7 0 0 0 0 0 ? S K55 S K54 S K53 S K52
∆X14 e7 0 0 0 0 ? ? e0,∼ S K59 S K58 S K57 S K56
∆X15 0 e7 0 ? ? ? e0,∼ e7 S K63 S K62 S K61 S K60
∆X16 e7 ? ? ? ? e0,∼ e7 e0,∼ S K67 S K66 S K65 S K64
∆X17 ? ? ? ? e0,∼ ? e0,∼ ? S K71 S K70 S K69 S K68

∆X17 ? ? ? e0,∼ e7 0 ? ? S K71 S K70 S K69 S K68
∆X18 ? ? e0,∼ e7 0 0 ? ? S K75 S K74 S K73 S K72
∆X19 ? e0,∼ e7 0 0 0 ? ? S K79 S K78 S K77 S K76
∆X20 e0,∼ e7 0 0 0 0 ? ? S K83 S K82 S K81 S K80
∆X21 e7 0 0 0 0 0 ? e2,∼ S K87 S K86 S K85 S K84
∆X22 0 0 0 0 0 0 e2,∼ e7 S K91 S K90 S K89 S K88
∆X23 0 0 0 0 0 0 e7 0 S K95 S K94 S K93 S K92
∆X24 0 0 0 0 0 0 0 0 S K99 S K98 S K97 S K96
∆X25 0 0 0 0 0 0 0 0 S K103 S K102 S K101 S K100
∆X26 0 0 0 0 0 0 0 0 S K107 S K106 S K105 S K104
∆X27 0 0 0 0 0 0 0 0 S K111 S K110 S K109 S K108
∆X28 0 0 0 e7 0 0 0 0 S K115 S K114 S K113 S K112

∆X29 0 e2,∼ e7 0 0 0 0 0 S K119 S K118 S K117 S K116
∆X30 e2,∼ e7 0 0 0 0 0 ? S K123 S K122 S K121 S K120
∆X31 e7 0 0 0 0 ? ? e0,∼ WK7 WK6 WK5 WK4
FT e0,∼ e7 0 0 0 0 ? ?

35

to 0. The r-th element of the array represents the key whose integer value is r. When a

key is eliminated, we will convert its corresponding value in the array to 1.

4.4 Related-Key Impossible Differential Attack on HIGHT-31

Attack procedure is to take a pair and perform partial encryptions and decryptions by guessing

the necessary key bytes and eliminating them if they satisfy the impossible differential char-

acteristic. The following steps are applied to every pair that we obtained in the data collection

part.

1. We guess MK0 and get S K0 (actually by guessing MK0, we get WK4, S K0, S K17,

S K34, S K51, S K68, S K85, S K102 and S K119, which can be checked from Table 2.3).

Since we know the values of the plaintexts, we obtain the bytes (2, 1) of X1 by partially

encrypting every plaintexts’ bytes (1, 0) of X0 with S K0. In order to satisfy the impossi-

ble differential characteristic, the obtained values of the pairs must have the difference

(0, ?). We keep the pairs satisfying this condition. Since the difference (0, ?) contains

8-bit filtering condition, 28 of the pairs are eliminated in this step. Hence 269/28 = 261

pairs remain.

2. We guess MK3 and obtain the bytes (7, 0) of X1 by partially encrypting the bytes (7, 6)

of X0 with S K3 for all remaining pairs. There are no filtering conditions in this step

since the required difference is (?, ?).

3. We guess MK4 and obtain the bytes (2, 1) of X2 by partially encrypting the bytes (1, 0)

of X1 with S K4 for all remaining pairs. We keep the pairs having the difference (0, ?) at

the bytes (2, 1) of X2. It contains 8-bit filtering condition so 253 pairs remain.

4. We guess MK9 and obtain the bytes (1, 0) of X30 by partially decrypting the bytes (2, 1)

of X31 with WK4 and S K120 for all remaining pairs. We keep the pairs having the

difference (0, ?) at the bytes (1, 0) of X30. It contains 8-bit filtering condition so 245

pairs remain.

5. We guess MK12 and obtain the bytes (7, 6) of X30 by partially decrypting the bytes

(7, 0) of X31 with WK7 and S K123 for all remaining pairs. We keep the pairs having

the difference (e2,∼, e7) at the bytes (7, 6) of X30. It contains 2-bit filtering condition

36

because F0(e7) becomes e0,∼ after modular addition and byte (0) of X31 is e0,∼. So the

least significant bit of byte (7) of X30 is always 0. Thus the filtering conditions are on

bits (2, 1) of byte (7) of X30. Hence 243 pairs remain.

6. We obtain the bytes (7, 6) of X29 by partially decrypting the bytes (7, 0) of X30 with

S K119 for all remaining pairs. Since we already guessed the secret key byte MK0, we

know the value of S K119. We keep the pairs having the difference (0, e2,∼) at the bytes

(7, 6) of X29. It contains 8-bit filtering condition so 235 pairs remain.

7. We guess MK2 and obtain the bytes (6, 5) of X1 by partially encrypting the bytes (5, 4)

of X0 with S K2 for all remaining pairs. There are no filtering conditions in this step.

8. We guess MK7 and obtain the bytes (7, 0) of X2 by partially encrypting the bytes (7, 6)

of X1 with S K7 for all remaining pairs. There are no filtering conditions in this step.

9. We guess MK8 and obtain the bytes (2, 1) of X3 by partially encrypting the bytes (1, 0)

of X2 with S K8 for all remaining pairs. We keep the pairs having the difference (0, ?) at

the bytes (2, 1) of X3. It contains 8-bit filtering condition so 227 pairs remain.

10. We guess MK11 and obtain the bytes (5, 4) of X30 by partially decrypting the bytes

(6, 5) of X31 with WK6 and S K122 for all remaining pairs. Since we already guessed the

secret key byte MK2, we know the value of WK6. There are no filtering conditions in

this step.

11. We obtain the bytes (5, 4) of X29 by partially decrypting the bytes (6, 5) of X30 with

S K118 for all remaining pairs. Since we already guessed the secret key byte MK7, we

know the value of S K118.There are no filtering conditions in this step.

12. We obtain the bytes (5, 4) of X28 by partially decrypting the bytes (6, 5) of X29 with

S K114 for all remaining pairs. We keep the pairs having the difference (0, e7) at the

bytes (5, 4) of X28. It contains 5-bit filtering condition because F1(e7) becomes e2,∼

after modular addition and byte (5) of X28 becomes e2,∼ ⊕ e2,∼ = e2̄,∼. So the least

significant 3 bits are always 0. Thus the filtering conditions are on the remaining 5 bits

of byte (5) of X28. Hence 222 pairs remain.

13. We guess MK1 and obtain the bytes (4, 3) of X1 by partially encrypting the bytes (3, 2)

of X0 with S K1 for all remaining pairs. There are no filtering conditions in this step.

37

14. We guess MK6 and obtain the bytes (6, 5) of X2 by partially encrypting the bytes (5, 4)

of X1 with S K6 for all remaining pairs. There are no filtering conditions in this step.

15. We obtain the bytes (7, 0) of X3 by partially encrypting (7, 6) of X2 with S K11 for all

remaining pairs. Since we already guessed the secret key byte MK11, we know the

value of S K11. There are no filtering conditions in this step.

16. We obtain the bytes (2, 1) of X4 by partially encrypting (1, 0) of X3 with S K12 for all

remaining pairs. Since we already guessed the secret key byte MK12, we know the

value of S K12. We keep the pairs having the difference (0, ?) at the bytes (2, 1) of X4. It

contains 8-bit filtering condition so 214 pairs remain.

17. We guess MK5 and obtain the bytes (4, 3) of X2 by partially encrypting the bytes (3, 2)

of X1 with S K5 for all remaining pairs. There are no filtering conditions in this step.

18. We guess MK10 and obtain the bytes (6, 5) of X3 by partially encrypting the bytes (5, 4)

of X2 with S K10 for all remaining pairs. There are no filtering conditions in this step.

19. We guess MK15 and obtain the bytes (7, 0) of X4 by partially encrypting the bytes

(7, 6) of X3 with S K15 for all remaining pairs. We keep the pairs having the difference

(e7, e2,∼) at the bytes (7, 0) of X4. It contains 2-bit filtering condition because F0(e7)

becomes e0,∼ after modular addition and byte (7) of X3 is e0,∼. So the least significant

bit of byte (0) of X4 is always 0. Thus the filtering conditions are on bits (2, 1) of byte

(0) of X4. Hence 212 pairs remain.

20. We obtain the bytes (2, 1) of X5 by partially encrypting (1, 0) of X4 with S K16 for all

remaining pairs. Since we already guessed the secret key byte MK7, we know the value

of S K16. We keep the pairs having the difference (0, e0,∼) at the bytes (2, 1) of X5. It

contains 8-bit filtering condition so 24 pairs remain.

21. We obtain the bytes (4, 3) of X3 by partially encrypting (3, 2) of X2 with S K9 for all

remaining pairs. Since we already guessed the secret key byte MK9, we know the value

of S K9. There are no filtering conditions in this step.

22. We guess MK14 and obtain the bytes (6, 5) of X4 by partially encrypting the bytes (5, 4)

of X3 with S K14 for all remaining pairs. There are no filtering conditions in this step.

38

23. We obtain the bytes (7, 0) of X5 by partially encrypting (7, 6) of X4 with S K19 for all

remaining pairs. Since we already guessed the secret key byte MK2, we know the value

of S K19. There are no filtering conditions in this step.

24. We obtain the bytes (2, 1) of X6 by partially encrypting (1, 0) of X5 with S K20 for all

remaining pairs. Since we already guessed the secret key byte MK3, we know the

value of S K20. We check if the obtained difference is (0, e7) at the bytes (2, 1) of X6.

If a pair satisfies this condition, we eliminate the corresponding key. It contains 5-bit

filtering condition because F1(e7) becomes e2,∼ after modular addition and byte (2) of

X6 becomes e2,∼ ⊕ e2,∼ = e2̄,∼. So the least significant 3 bits are always 0. Thus the

filtering conditions are on the remaining 5 bits of byte (2) of X6. Since there is an 5-bit

condition, every pair eliminates 2−5 of the keys. Therefore after the first pair, there

remain 2120 − 2115 = 2120 · (1 − 2−5) keys. After the second pair, it is expected to have

2120 · (1 − 2−5) − 2120 · (1 − 2−5) · 2−5 = 2120 · (1 − 2−5)2 many keys. Following that

manner, after the last pair, we have 2120 · (1 − 2−5)24
≈ 2119.27 remaining keys.

25. Now we reduced the number of possible keys from 2120 to 2119.27. For all these re-

maining keys, we guess the remaining 8 bits of the key, that is MK13, and exhaustively

search for the correct one. Hence we check 2119.27+8 = 2127.27 keys in this step. This

is done by encrypting one plaintext with the guessed key and checking whether the

corresponding ciphertext is obtained. To avoid false alarms, if a correct ciphertext is

obtained with a key, an another plaintext-ciphertext pair should be checked with the

same key. If the correct ciphertext is obtained again, we do the same with a third pair.

If the correct ciphertext is obtained for the third time, we conclude that the guessed

key is the correct secret key because the probability of obtaining the correct ciphertexts

three times with a wrong key is (2−64)3 = 2−192 and expected number of wrong keys is

2−192 · 2127.27 = 2−64.73.

These steps are summarized in Table 4.3.

4.5 Complexity

In this section we give the data, memory and time complexities of our related-key impossible

differential attack on HIGHT-31.

39

Table 4.3: 31-Round related key impossible differential attack, ∆MK15 = e7

Guess Use Obtain Check Condition Remaining
Key Byte Difference (In terms of bits) Pairs

1 MK0 S K0 (2, 1) of X1 (0, ?) 8 bits 261

2 MK3 S K3 (7, 0) of X1 - - 261

3 MK4 S K4 (2, 1) of X2 (0, ?) 8 bits 253

4 MK9 WK4, S K120 (1, 0) of X30 (0, ?) 8 bits 245

5 MK12 WK7, S K123 (7, 6) of X30 (e2,∼, e7) 2 bits 243

6 - S K119 (7, 6) of X29 (0, e2,∼) 8 bits 235

7 MK2 S K2 (6, 5) of X1 - - 235

8 MK7 S K7 (7, 0) of X2 - - 235

9 MK8 S K8 (2, 1) of X3 (0, ?) 8 bits 227

10 MK11 WK6, S K122 (5, 4) of X30 - - 227

11 - S K118 (5, 4) of X29 - - 227

12 - S K114 (5, 4) of X28 (0, e7) 5 bits 222

13 MK1 S K1 (4, 3) of X1 - - 222

14 MK6 S K6 (6, 5) of X2 - - 222

15 - S K11 (7, 0) of X3 - - 222

16 - S K12 (2, 1) of X4 (0, ?) 8 bits 214

17 MK5 S K5 (4, 3) of X2 - - 214

18 MK10 S K10 (6, 5) of X3 - - 214

19 MK15 S K15 (7, 0) of X4 (e7, e2,∼) 2 bits 212

20 - S K16 (2, 1) of X5 (0, e2,∼) 8 bits 24

21 - S K9 (4, 3) of X3 - - 24

22 MK14 S K14 (6, 5) of X4 - - 24

23 - S K19 (7, 0) of X5 - - 24

24 - S K20 (2, 1) of X6 (0, e7) 5 bits -

4.5.1 Data Complexity

Since the block size of HIGHT is 64, we can have at most 264 different plaintext blocks and we

used all of them in our attack. However, 263 of these plaintexts are encrypted with K1 and the

other with K2. This attack has more filtering conditions than our attack on HIGHT-26 that is

given in Chapter 3 and this is the reason for taking more plaintexts in the data collection part.

The data complexity of this attack is 264 chosen-plaintexts. However, the number of pairs can

still be increased in order to decrease the time complexity or the attack can be applied with

less data complexity which results in higher time complexity. These situations are considered

in Section 4.6.

4.5.2 Memory Complexity

At 24th step of the attack, if a pair satisfies the guessed key, it is eliminated. At the end of

the attack, we have to know which keys are eliminated and which are not. Since the attack is

on 120 bits of the secret key, namely (MK15,MK14,MK12, . . . ,MK0), at the beginning of the

40

attack we form an array of bits with size 2120 and initialize them to 0. The r-th element of the

array represents the key whose integer value is r. When a key is eliminated, its corresponding

value is converted to 1.

Such an array requires 2120 bits which is 2117 bytes. During the attack, some values must be

stored in the memory too but their size is negligible when compared to this array. Hence the

memory complexity of the attack is 2117 bytes.

4.5.3 Time Complexity

In the first step, we guess MK0 which can take 28 different values. We have 269 pairs and we

partially encrypt all of them with the guessed key. Hence we do 2 · 28 · 269 partial encryptions

in the first step (multiplication by 2 comes from the fact that we are working with pairs).

However, we will compare the time complexity of the attack with exhaustive search which

is 2128 HIGHT-31 encryptions. In this step we encrypted only 1/4th of a round of HIGHT.

Hence the time complexity of the first step is 2 ·28 ·269 · 1
4 ·

1
31 ≈ 271.05 HIGHT-31 encryptions.

In the second step , we guess MK3 so the number of guessed key bits becomes 16. In the first

step 28 of the pairs are eliminated and now 261 pairs remain. Hence the time complexity of

the second step is 2 · 216 · 261 · 1
4 ·

1
31 ≈ 271.05 HIGHT-31 encryptions. The time complexities

of the first 23 steps are calculated in a similar way and they are given in Table 4.4.

In step 24, a pair eliminates 25 of the keys and once a key is eliminated, there is no need to use

that key with other pairs. Hence for the first pair, we check 2120 keys, 2120 − 2115 = 2120 · (1−

2−5) keys are checked for the second pair and so on and so forth. Thus the complexity of this

step is 2 · 2120
{
1 + (1 − 2−5) + . . . + (1 − 2−5)24−1

}
· 1

4 ·
1
31 ≈ 2117.89 HIGHT-31 encryptions.

In step 25, we have approximately 2119.27 key candidates which covers the 120 bits of the

secret key. For all these keys, we guess the remaining 8 bits of the key and check whether the

obtained 128 bit key is correct or not. Hence the complexity of this step is 2119.17+8 = 2127.17

HIGHT-31 encryptions.

Time complexity of each step is given in Table 4.4. The total time complexity of the attack

is the sum of the time complexities of each step, which is 2127.28 HIGHT-31 encryptions.

However, this number can be decreased if we increase the number of pairs that we used in our

41

Table 4.4: Time Complexities of Each Step of the Attack

Step Complexity (HE)
1 2 · 28 · 269 · 1

4 ·
1

26 ≈ 284.30

2 2 · 216 · 261 · 1
4 ·

1
26 ≈ 284.30

3 2 · 224 · 261 · 1
4 ·

1
26 ≈ 284.30

4 2 · 232 · 253 · 1
4 ·

1
26 ≈ 292.30

5 2 · 240 · 245 · 1
4 ·

1
26 ≈ 292.30

6 2 · 240 · 243 · 1
4 ·

1
26 ≈ 2100.30

7 2 · 248 · 235 · 1
4 ·

1
26 ≈ 292.30

8 2 · 256 · 235 · 1
4 ·

1
26 ≈ 292.30

9 2 · 264 · 235 · 1
4 ·

1
26 ≈ 2100.30

10 2 · 272 · 227 · 1
4 ·

1
26 ≈ 292.30

11 2 · 272 · 227 · 1
4 ·

1
26 ≈ 2100.30

12 2 · 272 · 227 · 1
4 ·

1
26 ≈ 2108.30

13 2 · 280 · 222 · 1
4 ·

1
26 ≈ 2100.30

14 2 · 288 · 222 · 1
4 ·

1
26 ≈ 2100.30

15 2 · 288 · 222 · 1
4 ·

1
26 ≈ 2108.30

16 2 · 288 · 222 · 1
4 ·

1
26 ≈ 2108.30

17 2 · 296 · 214 · 1
4 ·

1
26 ≈ 2100.30

18 2 · 2104 · 214 · 1
4 ·

1
26 ≈ 2108.30

19 2 · 2112 · 214 · 1
4 ·

1
26 ≈ 2116.30

20 2 · 2112 · 212 · 1
4 ·

1
26 ≈ 2116.30

21 2 · 2112 · 24 · 1
4 ·

1
26 ≈ 2108.30

22 2 · 2120 · 24 · 1
4 ·

1
26 ≈ 2108.30

23 2 · 2120 · 24 · 1
4 ·

1
26 ≈ 2116.30

24 2 · 2120
{
1 + (1 − 2−5) + . . . + (1 − 2−5)24−1

}
· 1

4 ·
1
31 ≈ 2114.30

25 2119.27+8 = 2127.27

Total ≈ 2127.28

attack and this situation is considered in Section 4.6.

4.6 Summary

In this chapter we introduced our related-key impossible differential attack on HIGHT-31

which uses a 22-round impossible differential characteristic. To our knowledge, this is the

best attack on HIGHT.

Related-key impossible differential cryptanalysis results are given in Table 4.5. Our attack is

slightly better than the exhaustive search and it reduces the security margin of HIGHT to 1.

Notice that in a related key attack, the pair (P1, P2) encrypted with the keys (K1,K2) and

42

Table 4.5: Summary of the related-key impossible differential attacks on HIGHT

Rounds Key Data Time Memory Reference
Size Complexity Complexity Complexity

28 128 260 CP 2125.54HE not specified [12]
31 128 264 CP 2127.28HE 2117 bytes Chapter 4

the pair (P2, P1) encrypted with keys (K1,K2) are different since the corresponding cipher-

texts are different. Hence the number of pairs can be doubled in this way. In that case, the

time complexity of the attack reduces to 2126.56 HIGHT-31 encryptions and data complexity

increases to 265 CP.

Although we used 264 chosen-plaintexts in our attack, the same attack can be applied with

less data. For example, in the data collection part, if we choose 214 structures instead of 215,

the attack can be applied with 263 data complexity, 2120 memory complexity and 2127.63 time

complexity.

43

CHAPTER 5

CONCLUSION

In this study, we focused on the lightweight block cipher HIGHT and further investigated its

security against impossible differential cryptanalysis. At first, we defined the (related-key)

impossible differential cryptanalysis technique and presented the specifications of HIGHT

and previous impossible differential attacks on HIGHT. Then we presented our impossible

differential attack on HIGHT-26 (without initial transformation) which is the best attack on

HIGHT among the attacks that does not use related-keys. This attack was an improvement to

Lu’s impossible differential attack on HIGHT-25 and although the both attacks use a 16-round

impossible differential characteristic, our attack’s time complexity is significantly better.

In Chapter 3 we also justify our steps when we are constructing our impossible differential

characteristic and show why we believe that a better impossible differential characteristic can

not be found and therefore an impossible differential attack can not be directly applicable to

HIGHT-27 or higher.

In Chapter 4, we investigated the weaknesses in the key schedule of HIGHT and obtained

two different 22-round related-key impossible differential characteristics. By using one of

these characteristics, we presented our 31-round related-key impossible differential attack on

HIGHT-31 (without initial transformation) which is slightly faster than exhaustive search.

This is the best known cryptanalytic result on HIGHT.

The two attacks that are presented in this thesis are appeared in 14th Australasian Confer-

ence on Information Security and Privacy (ACISP 2009) with the title ”Lightweight Block

Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT” [24] which is a

collaborative work of Onur Özen, Kerem Varıcı, Cihangir Tezcan and Çelebi Kocair.

44

Table 5.1: Summary of the known attacks on HIGHT

Rounds Attack Data Time Memory Reference
Type Complexity Complexity Complexity

13 Differential 262 CP not specified not specified [2]
13 Linear 257 KP not specified not specified [2]
13 Boomerang 262 CP not specified not specified [2]
16 Truncated Differential 214.1 CP 2108.69 HE not specified [2]
18 Impossible Differential 246.8 CP 2109.2 HE not specified [2]
25 Impossible Differential 260 CP 2126.78HE not specified [12]
26 Impossible Differential 261 CP 2119.53HE 2109 bytes Chapter 3

19 Related-key Boomerang not specified not specified not specified [2]
25 Related-key Rectangle 251.2 CP 2120.41 HE not specified [12]
28 Related-key Impossible Diff. 260 CP 2125.54HE not specified [12]
31 Related-key Impossible Diff. 264 CP 2127.28HE 2117 bytes Chapter 4

Summary of the known attacks on HIGHT is given in Table 5.1.

45

REFERENCES

[1] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2002.

[2] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Louis Goubin and Mitsuru Matsui (editors), CHES 2006, volume 4249 of
Lecture Notes in Computer Science, pages 46-59. Springer, 2006.

[3] South Korea Telecommunications Technology Associations (TTA). 64-bit Block
Cipher HIGHT. Standardization Number TTAS.KO-12.0040, 27 December 2006,
http://www.tta.or.kr/English/new/standardization/eng ttastddesc.jsp?stdno=TTAK.KO-
12.0040/R1, last visited on July 2009.

[4] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede (editors), CHES
2007, volume 4727 of Lecture Notes in Computer Science, pages 450-466. Springer,
2007.

[5] Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher for
Security of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung Kwon, and
Moti Yung (editors), WISA 2005, volume 3786 of Lecture Notes in Computer Science,
pages 243-258. Springer, 2005.

[6] François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques Quisquater.
SEA: A Scalable Encryption Algorithm for Small Embedded Applications. In Josep
Domingo-Ferrer, Joachim Posegga, and Daniel Schreckling (editors), CARDIS 2006,
volume 3928 of Lecture Notes in Computer Science, pages 222-236. Springer, 2006.

[7] Matthew J. B. Robshaw. Searching for Compact Algorithms: CGEN. In Phong Q.
Nguyen (editor), VIETCRYPT, volume 4341 of Lecture Notes in Computer Science,
pages 37-49. Springer, 2006.

[8] Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm. New Lightweight
DES Variants. In Alex Biryukov (editor), FSE 2007, volume 4593 of Lecture Notes in
Computer Science, pages 196-210. Springer, 2007.

[9] David J. Wheeler and Roger M. Needham. TEA, a Tiny Encryption Algorithm. In Bart
Preneel (editor), FSE ’94, volume 1008 of Lecture Notes in Computer Science, pages
363-366. Springer, 1994.

[10] David J. Wheeler and Roger M. Needham. TEA Extensions. October 1997.

[11] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptol-
ogy, 7(4), pages 229-246, 1994.

46

[12] Jiqiang Lu. Cryptanalysis of Block Ciphers. PhD thesis, Royal Holloway, University of
London, England, July 2008.

[13] Jiqiang Lu. Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES
2006. In Kil-Hyun Nam and Gwangsoo Rhee (editors), ICISC 2007, volume 4817 of
Lecture Notes in Computer Science, pages 11-26. Springer, 2007.

[14] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. Journal of Cryptology, 18(4), pages 291-311,
2005.

[15] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijnmen. AES Implementation
on a Grain of Sand. IEE Preceedings on Information Security, Volume 152, Issue 1,
pages 13-20, 2005.

[16] Eli Biham, Alex Biryukov, and Adi Shamir. Impossible Differential Attacks,
http://video.google.com/videoplay?docid=1283860161748060032, CRYPTO 1998,
Rump Session, last visited on July 2009.

[17] National Institute of Standards and Technologies. Skipjack and KEA Algorithm Specifi-
cations, http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf, Version
2.0, 29 May 1998, last visited on July 2009.

[18] National Institute of Standards and Technologies. Announcing Request for Can-
didate Algorithm Nominations for the Advanced Encryption Standard (AES),
http://csrc.nist.gov/archive/aes/pre-round1/aes 9709.htm, 12 September 1997, last vis-
ited on July 2009.

[19] National Institute of Standards and Technologies. Commerce Depart-
ment Announces Winner of Global Information Security Competition,
http://www.nist.gov/public affairs/releases/g00-176.htm, 2 October 2000, last vis-
ited on July 2009.

[20] Lars Ramkilde Knudsen. DEAL - A 128-bit Block Cipher, AES submission,
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/newblock.html, last visited on July
2009.

[21] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differential Crypt-
analysis. In Donald W. Davies (editor), Advances in Cryptology, EUROCRYPT’91, vol-
ume 547 of Lecture Notes in Computer Science, pages 17-38. Springer, 1991.

[22] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the Middle Attacks on IDEA, and
Khufu. In Kaisa Nyberg (editor), FSE ’99, volume 1636 of Lecture Notes in Computer
Science, pages 124-138. Springer, 1999.

[23] Ralph C. Merkle. Fast Software Encryption Functions. In Alfred Menezes and Scott A.
Vanstone (editors), Advances in Cryptology, CRYPTO’90, volume 537 of Lecture Notes
in Computer Science, pages 476-501. Springer, 1990.

[24] Onur Özen, Kerem Varıcı, Cihangir Tezcan and Çelebi Kocair. Lightweight Block Ci-
phers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In Colin Boyd
and Juan Gonzalez Nieto (editors), ACISP 2009, volume 5594 of Lecture Notes in Com-
puter Science, pages 90-107. Springer, 2009.

47

[25] Eli Biham and Adi Shamir. Differential Cryptanalysis of Data Encryption Standard.
Springer-Verlag, 1993.

[26] National Institute of Standards and Technologies. Data Encryption Standard. In Federal
Information Processing Standards Publication, FIPS-46-3, November 1976.

[27] Kaisa Nyberg and Lars Ramkilde Knudsen. Provable Security Against Differential
Cryptanalysis. In Ernest F. Brickell (editor), Advances in Cryptology, CRYPTO ’92,
volume 740 of Lecture Notes in Computer Science, pages 566-574. Springer, 1993.

[28] Lars Ramkilde Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang
Zheng (editors), Advances in Cryptology, AUSCRYPT ’92, volume 718 of Lecture Notes
in Computer Science, pages 196-208. Springer-Verlag, 1993.

[29] Lawrence Brown, Josef Pieprzyk, and Jennifer Seberry. LOKI - A Cryptographic Primi-
tive for Authentication and Secrecy Applications. In Jennifer Seberry and Josef Pieprzyk
(editors), Advances in Cryptology, AUSCRYPT ’90, volume 453 of Lecture Notes in
Computer Science, pages 229-236. Springer, 1990.

[30] Lawrence Brown, Matthew Kwan, Josef Pieprzyk, and Jennifer Seberry. Improving Re-
sistance to Differential Cryptanalysis and the Redesign of LOKI. In Hideki Imai, Ronald
L. Rivest and Tsutomu Matsumoto (editors), Advances in Cryptology, ASIACRYPT ’91,
volume 739 of Lecture Notes in Computer Science, pages 36-50. Springer, 1993.

[31] Arthur Sorkin. Lucifer, a Cryptographic Algorithm. Cryptologia, Volume 8, No. 1, pages
22-41. January 1984.

[32] Bruce Schneier and John Kelsey. Unbalanced Feistel Networks and Block-Cipher De-
sign. In Dieter Gollman (editor), FSE ’96, volume 1039 of Lecture Notes in Computer
Science, pages 121-144. Springer, 1996.

[33] Young-Il Lim, Je-Hoon Lee, Younggap You, and Kyoung-Rok Cho. Implementation of
HIGHT cryptic circuit for RFID tag. In IEICE Electronics Express, Volume 8, No. 4,
pages 180-186, 2009.

[34] Soeren Rinne, Thomas Eisenbarth, and Christof Paar. Performance Analysis of Con-
temporary Light-Weight Block Ciphers on 8-bit Microcontrollers. In ECRYPT workshop
SPEED - Software Performance Enhancement for Encryption and Decryption booklet,
pages 33-43, 2007.

[35] Lars Ramkilde Knudsen. Truncated and Higher Order Differentials. In Bart Preneel
(editor), FSE ’94, volume 1008 of Lecture Notes in Computer Science, pages 196-211.
Springer-Verlag, 1995.

[36] Alex Biryukov and David Wagner. Slide Attacks. In Lars R. Knudsen (editor), FSE ’99,
volume 1636 of Lecture Notes in Computer Science, pages 245-259. Springer-Verlag,
1999.

[37] John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz (editor), Advances
in Cryptology, CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages
237-251. Springer-Verlag, 1996.

48

[38] David Wagner. The Boomerang Attack. In Lars R. Knudsen (editor), FSE ’99, volume
1636 of Lecture Notes in Computer Science, pages 156-170, Springer, 1999.

[39] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rectangling
the Serpent. In Birgit Pfitzmann (editor), Advances in Cryptology, EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 340-357. Springer-Verlag,
2001.

49

