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Chapter 1

Introduction

Although an encryption process makes a plaintext unreadable to adversaries,
the resulting ciphertext may still leak some privacy. For example, the length
of a plaintext may give some information away and it may be obtained from
the ciphertext. For instance, the lengths of a plaintext and the corresponding
ciphertext are identical or differ by a small number when the encryption is
done by a stream or a block cipher. One way of hiding the plaintext size is
to use random padding before the encryption which appends a padding of
random length in [0, n). In this work, we investigate the information leakage
when random padding is used.

In order to see the information leakage in random padding, we first
modify the indistinguishability under chosen-plaintext attack (IND−CPA)
game to define two new games E − IND−CPA and ∆− IND−CPA. In
E−IND−CPA game, the two chosen plaintexts have different lengths and
in ∆ − IND − CPA game, the difference of the lengths of the two chosen
plaintexts is less than or equal to some positive integer ∆. Hence, in these
games the adversary selects two plaintexts of different lengths and sends
them to the challenger. The challenger selects one of them, uses random
padding, encrypts it, and then sends the ciphertext back to the adversary.
Since the lengths of the plaintexts are different, the adversary has nonzero
advantage. Our aim is to find the best distribution for the length of the
random padding so that the advantage of the adversary is minimized.

In this study, we assume that the distribution used for the length of the
random padding is independent from the plaintext and we investigate the
security of the ∆− IND −CPA game. When n is divisible by ∆, we solve
the problem of finding the best distribution and for this solution we show
that the winning chance of the best adversary is 1

2 + ∆
2n . We also show that

when n is not divisible by ∆, for the best distribution the winning chance
of the best adversary is upper bounded by 1

2 + ∆
2n and lower bounded by

1
2 + 1

2d n
∆e

.
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Moreover, for the case when n is not divisible by ∆, the winning chance
of the best adversary is 1

2 + n
n2+1

for the best distribution when ∆ = 2.



Chapter 2

Games, Advantage, and
Security Analysis

2.1 Games

In all of the following games, we assume that the challenger pads a random
bit string of length i to the plaintext before the encryption. The following
assumptions can be made to define the behavior of the random padding:

A1: i depends only on |P | and independent random coins
A2: i is independent from P
A3: Pr[i ≤ n− 1] = 1

Note that the assumptionA2 is stronger than the assumptionA1. Through-
out this work, we assume that the padded bit string of length i is indepen-
dent from P and Pr[i ≤ n− 1] = 1 (i.e. We assume that A2 and A3 holds).
Hence, if c is the ciphertext for the plaintext p, we have |c| = |p|+ i where
i ∈ [0, n− 1].

We define the extended indistinguishability under chosen-plaintext at-
tack game (E − IND − CPA) as follows:

Game 1. [E − IND − CPA]
1: Challenger selects a key at random
2: Adversary selects plaintexts p0 and p1

3: Challenger selects a bit b, encrypts pb → c and sends c back to the
adversary

4: Adversary guesses b
′

and wins if b
′

= b

The difference with the standard IND − CPA game is that we do
not restrict to |p0| = |p1| in the E − IND − CPA game. We define the
∆− IND − CPA game as follows:
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Game 2. [∆− IND − CPA]
1: Challenger selects a key at random
2: Adversary selects plaintexts p0 and p1 where ||p0| − |p1|| ≤ ∆
3: Challenger selects a bit b, encrypts pb → c and sends c back to the

adversary
4: Adversary guesses b

′
and wins if b

′
= b

In this study, we aim to find the optimal distribution that defines the
length of the random padding for the ∆ − IND − CPA game with the
assumptions A2 and A3.

2.2 Advantage

Definition 1. We say that a cryptosystem is ∆− IND − CPA ε-secure if
the winning chances of every adversary is less than or equal to 1

2 + ε
2 .

Definition 2 (Advantage). Let a and b be non-negative integers with a <
b. For a set A of integers, we define DA(X) = 1X∈A and we use DA to
distinguish a+N from b+N where N is a random variable. The advantage
we obtain is

AdvDA
(a, b) = Pr[a+N ∈ A]− Pr[b+N ∈ A].

Thus, our aim is to find the optimal distribution that defines the length
of the random padding which minimizes max|b−a|≤∆ maxAAdvDA

(a, b) for
the ∆− IND − CPA game.

2.3 Security Analysis

Lemma 1. We have Pr[N < b− a] ≤ maxAAdvDA
(a, b) and equality holds

if and only if Pr[N = x+ b− a] ≤ Pr[N = x] for all x ≥ 0.

Proof. Let ε = maxAAdvDA
(a, b). Then we have

ε = max
A

(Pr[a+N ∈ A]− Pr[b+N ∈ A])

= max
A

∑
x∈A

(Pr[N = x− a]− Pr[N = x− b])

=
∑

x:Pr[N=x−a]≥Pr[N=x−b]

(Pr[N = x− a]− Pr[N = x− b])

≥
∑
x:x<b

Pr[N = x− a]

= Pr[N < b− a]



Since the optimal A is the set of all x’s such that Pr[N = x− a] > Pr[N =
x− b], we have ε ≥ Pr[N < b− a] and equality holds if and only if Pr[N =
x+ b− a] ≤ Pr[N = x] for all x ≥ 0.

Theorem 1. If b− a = 1, then maxAAdvDA
(a, b) ≥ 1

n and equality holds if
and only if N is uniform.

Proof. Let ε = maxAAdvDA
(a, b).

Case 1: Assume Pr[N = 0] > 1
n . Then forA = {a} we haveAdvDA

(a, b) =
Pr[N = 0]. Hence, ε ≥ Pr[N = 0] > 1

n .

Case 2: Assume Pr[N = 0] = 1
n . If there exists an integer j 6= a with

Pr[N = j − a] > Pr[N = j − b], then A = {a, j} makes ε ≥ AdvDA
(a, b) =

Pr[N = 0] + Pr[N = j − a]− Pr[N = j − b] > 1
n .

If such a j does not exist, then Pr[N = x + b − a] ≤ Pr[N = x]
for all x ≥ 0 and by Lemma 1 we obtain ε = Pr[N = 0] = 1

n . When
Pr[N = x+ b−a] = Pr[N = x] for all x ≥ 0, N becomes uniform and ε = 1

n .
Note that we cannot have Pr[N = x + 1] < Pr[N = x] for some x because

this would make
n−1∑
i=0

Pr[N = i] < 1, which contradicts the fact that N is a

random variable.

Case 3: Let us assume that Pr[N = 0] < 1
n . Then 1

n − Pr[N = 0] = δ

for some δ > 0. Let
n−1∑
i=1

(Pr[N = i]− Pr[N = i− 1]) ≤ δ. Then Pr[N = i] ≤

1
n−δ+δ for all i ∈ [1, n−1]. Therefore,

n−1∑
i=0

Pr[n = i] ≤ 1
n
−δ+(n−1)

1
n

= 1−δ

which is not possible. So we must have
n−1∑
i=1

(Pr[N = i]−Pr[N = i− 1]) > δ.

Since Pr[N = 0] = 1
n − δ, we get ε > 1

n .

Thus, in all of the cases ε ≥ 1
n and equality holds if and only if N is

uniform.

Theorem 2. If b−a = ∆ and n is divisible by ∆, then maxAAdvDA
(a, b) ≥

∆
n and equality holds if and only if Pr[N < b − a] = ∆

n and Pr[N = i] is
periodic over [0, . . . , n− 1] with period ∆.

Proof. Let ε = maxAAdvDA
(a, b).



Case 1: Assume Pr[N < ∆] > ∆
n . Then for A = {a, a+1, . . . , a+∆−1},

we have ε ≥ AdvDA
(a, b) = Pr[N < ∆] > ∆

n .

Case 2: Assume Pr[N < ∆] = ∆
n . If there exists an integer j > a+∆−1

with Pr[N = j − a] > Pr[N = j − b], then A = {a, a + 1, . . . , a + ∆ − 1, j}
makes ε ≥ AdvDA

(a, b) = Pr[N < ∆] + Pr[N = j − a]− Pr[N = j − b] > ∆
n .

If such a j does not exist, then we have Pr[N = x + ∆] ≤ Pr[N = x]
for all x ≥ 0. Note that when Pr[N = x + ∆] = Pr[N = x] for all
x ∈ [0, n − ∆ − 1], by Lemma 1 we obtain ε = ∆

n and Pr[N = i] be-
comes periodic over [0, . . . , n − 1] with period ∆. Since n is divisible by
∆, we get Pr[j∆ ≤ N < (j + 1)∆] ≤ ∆

n for all j ∈ [0, . . . , n∆ ]. There-

fore, we have 1 =
n−1∑
i=0

Pr[N = i] ≤ n

∆
· ∆
n

= 1. Thus, we cannot have

Pr[N = x+ ∆] < Pr[N = x] for any x.

Case 3: Assume Pr[N < ∆] < ∆
n . Then ∆

n − Pr[N < ∆] = δ for some

δ > 0. Since

n
∆
−1∑

j=0

(j+1)∆−1∑
i=j∆

Pr[N = i] = 1 and
∆−1∑
i=0

Pr[N = i] =
∆
n
− δ, there

must exist an integer j such that
(j+1)∆−1∑
i=j∆

Pr[N = i] >
∆
n

+ δ. Thus, if we

set A = {a, a+ 1, . . . , a+ (j + 1)∆− 1}, we obtain ε ≥ AdvDA
(a, b) > ∆

n .
Thus in all cases ε ≥ ∆

n and equality holds if and only if Pr[N < ∆] = ∆
n

and Pr[N = i] is periodic over [0, . . . , n− 1] with period ∆.

Remark 1. If b− a = ∆ and n is not divisible by ∆, ε can be less than ∆
n .

Example 1. Let b− a = ∆ = 2 and n = 5. We define N as follows:

Pr[N = 0] = Pr[N = 2] = Pr[N = 4] = 0.22
Pr[N = 1] = Pr[N = 3] = 0.17

Thus, ε = Pr[N = 0] + Pr[N = 1] = 0.39 which is less than 2
5 . However,

if we keep this N and reduce ∆ to 1, we get ε = Pr[N = 0] + Pr[N =
2] + Pr[N = 4] − Pr[N = 1] − Pr[N = 3] = 0.32. Thus, for ∆ = 1 and
∆ = 2, we have ε = 0.32 and ε = 0.39, respectively. Note that when N is
uniform, for ∆ = 1 and ∆ = 2 we have ε = 0.2 and ε = 0.4, respectively.

Corollary 1. If b− a = ∆, then

max
A

AdvDA
(a, b) ≥ 1⌈

n
∆

⌉ .



Proof. Let ε = maxAAdvDA
(a, b).

Case 1: Assume Pr[N < ∆] > 1

d n
∆e

. Then for A = {a, a+ 1, . . . , a+ ∆−

1}, we have ε ≥ AdvDA
(a, b) = Pr[N < ∆] > 1

d n
∆e

.

Case 2: Assume Pr[N < ∆] = 1

d n
∆e

. If there exists an integer j > a +

∆−1 with Pr[N = j−a] > Pr[N = j−b], then A = {a, a+1, . . . , a+∆−1, j}
makes ε ≥ AdvDA

(a, b) = Pr[N < ∆]+Pr[N = j−a]−Pr[N = j−b] > 1

d n
∆e

.

If such a j does not exist, then we have Pr[N = x + ∆] ≤ Pr[N = x]
for all x ≥ 0. Note that when Pr[N = x + ∆] = Pr[N = x] for all
x ∈ [0, n − ∆ − 1], by Lemma 1 we have ε = 1

d n
∆e

and Pr[N = i] becomes

periodic over [0, . . . , n−1] with period ∆. Note that the periodicity of ∆ di-
vides Pr[N = i] into

⌈
n
∆

⌉
intervals and when the sum of the probabilities in

every interval is 1

d n
∆e

, we have
n−1∑
i=0

Pr[N = i] =
⌈ n

∆

⌉
· 1⌈

n
∆

⌉ = 1. This prop-

erty gives the restriction that Pr[N = ∆− 1− t] = . . . = Pr[N = ∆− 1] = 0
where t is the remainder of the division of n by ∆.

Case 3: Assume Pr[N < ∆] < 1

d n
∆e

. Then 1

d n
∆e
− Pr[N < ∆] = δ

for some δ > 0. Let
n−1∑
i=∆

(Pr[N = i] − Pr[N = i − ∆]) ≤ δ. Then

(j+1)∆−1∑
i=j∆

Pr[N = i] ≤ 1⌈
n
∆

⌉ − δ + δ for all j ∈ [1, . . . , n∆ − 1]. Therefore,

n−1∑
i=1

Pr[n = i] ≤ 1⌈
n
∆

⌉ − δ + (
⌈ n

∆

⌉
− 1) · 1⌈

n
∆

⌉ = 1 − δ which is not pos-

sible. So we must have
n−1∑
i=∆

(Pr[N = i] − Pr[N = i − ∆]) > δ. Since

Pr[N < ∆] = 1

d n
∆e
− δ, we get ε > 1

d n
∆e

.

Thus in all cases ε ≥ 1

d n
∆e

and equality holds if and only if Pr[N <

∆] = 1

d n
∆e

, Pr[N = i] is periodic over [0, . . . , n − 1] with period ∆ and

Pr[N = ∆ − 1 − t] = . . . = Pr[N = ∆ − 1] = 0 where t is the remainder of
the division of n by ∆.

Example 2. For any given n and ∆, note that the following distribution
always satisfies the minimum advantage 1

d n
∆e

that is given in Corollary 1.



Let Pr[N = 0] = 1

d n
∆e

, Pr[N = 1] = . . . = Pr[N = ∆ − 1] = 0

and let Pr[N = i] be periodic over [0, . . . , n − 1] with period ∆. Then
n−1∑
i=0

Pr[N = i] =
⌈ n

∆

⌉
· 1⌈

n
∆

⌉ = 1 and maxAAdvDA
(a, b) = Pr[N = 0] = 1

d n
∆e

.

However, max|b−a|=1 maxAAdvDA
(a, b) = 1 for this construction because

of A = {a, a + ∆, a + 2∆ . . .}. Therefore, Corollary 1 provides the lower
bound 1

d n
∆e

for max|b−a|≤∆ maxAAdvDA
(a, b) but this lower bound may not

be achievable.

Theorem 3. For b − a ≤ ∆, if n is divisible by ∆ then for the optimal
distribution max|b−a|≤∆ maxAAdvDA

(a, b) = ∆
n . Otherwise

∆
n
≥ max
|b−a|≤∆

max
A

AdvDA
(a, b) ≥ 1⌈

n
∆

⌉ .
Proof. Let ε = max|b−a|≤∆ maxAAdvDA

(a, b).

Case 1: When n is divisible by ∆, by Theorem 2 we obtain ε ≥ ∆
n and

it is clear that the uniform distribution satisfies the equality. Thus, ε = ∆
n

for the optimal distribution.

Case 2: When n is not divisible by ∆, by Corollary 1 we obtain ε ≥ 1

d n
∆e

but this lower bound may not be achievable. Moreover, if we select N as
the uniform distribution, then we obtain ε = Pr[N < ∆] = ∆

n .
Thus, ∆

n ≥ ε ≥ 1

d n
∆e

for the optimal distribution and upper bound is

achievable when N is uniform.

Theorem 4. If b− a ≤ 2 and n is odd, then for the optimal distribution

max
|b−a|<2

max
A

AdvDA
(a, b) =

2n
n2 + 1

.

Proof. Let
ε = max

|b−a|<2
max
A

AdvDA
(a, b),

ε1 = max
|b−a|=1

max
A

AdvDA
(a, b),

ε2 = max
|b−a|=2

max
A

AdvDA
(a, b).



Case 1: Assume Pr[N = 0] and Pr[N = 1] are both higher than 1
n . Then

for A = {a, a + 1} we have ε ≥ AdvDA
(a, b) = Pr[N < 2] > 2

n which is no
better than N being uniform.

Case 2: Assume Pr[N = 0] and Pr[N = 1] are both less than 1
n . Then

Pr[N < 2] = 2
n − δ for some δ > 0. But in this case, in order to have

n−1∑
i=0

Pr[N = i] = 1, the total increase in the probabilities must be more than

δ as shown in case 3 of Theorem 1 and 2 (i.e.
n−1∑
i=2

(Pr[N = i] − Pr[N =

i− 2]) > δ). Thus, ε2 > 2
n .

Case 3: Assume one of Pr[N = 0] and Pr[N = 1] is higher than 1
n and

the other is less than 1
n . By Theorem 2 (or 3), we require Pr[N = i] to be

periodic over [0, . . . , n − 1] with period 2 to minimize the advantage. Let
Pr[N = 0] = 1

n + γ and Pr[N = 1] = 1
n − δ for some γ, δ > 0.

Since
n−1∑
i=0

Pr[N = i] = 1 and Pr[N = i] is periodic, we get 1−
(
n−1

2

)
δ +(

n+1
2

)
γ = 1. Thus, δ =

(
n+1
n−1

)
γ.

Hence, ε2 = Pr[N < 2] = 2
n + γ − δ = 2

n −
2γ
n−1 and ε1 = Pr[N =

0] +

n−1
2∑
i=1

(Pr[N = 2i]−Pr[2i−1]) =
1
n

+γ+
(
n− 1

2

)
(γ+ δ) =

1
n

+ (n+ 1)γ.

Note that ε is minimized when ε1 = ε2 and this equality is obtained when
γ = n−1

n3+n
. Thus, ε ≥ 2n

n2+1
.

For the final case where Pr[N = 0] = 1
n − δ and Pr[N = 1] = 1

n + γ, the
assumption of the periodicity makes γ > δ. Hence, for A = {a, a + 1} we
obtain ε ≥ AdvDA

(a, b) = Pr[N < 2] > 2
n .

Theorem 4 shows that when b − a ≤ 2 and n is odd, the lower bound
1

dn
2 e

for the maximum advantage is not achievable. Results of Theorem 3

and 4 for the case when ∆ = 2 and n is odd are provided in Table 2.1 for
small values of n.



Table 2.1: Results of the Theorem 3 and 4 when ∆ = 2 and n is odd
n Upper bound (Thm. 3) Best Achievable (Thm. 4) Lower Bound (Thm. 3)
3 0.666666666666667 0.6 0.5
5 0.4 0.384615384615385 0.333333333333333
7 0.285714285714286 0.28 0.25
9 0.222222222222222 0.219512195121951 0.2
11 0.181818181818182 0.180327868852459 0.166666666666667
13 0.153846153846154 0.152941176470588 0.142857142857143
15 0.133333333333333 0.132743362831858 0.125
17 0.117647058823529 0.117241379310345 0.111111111111111
19 0.105263157894737 0.104972375690608 0.1
21 0.0952380952380952 0.0950226244343891 0.0909090909090909
23 0.0869565217391304 0.0867924528301887 0.0833333333333333
25 0.08 0.0798722044728434 0.0769230769230769
27 0.0740740740740741 0.073972602739726 0.0714285714285714
29 0.0689655172413793 0.0688836104513064 0.0666666666666667
31 0.0645161290322581 0.0644490644490645 0.0625
33 0.0606060606060606 0.0605504587155963 0.0588235294117647
35 0.0571428571428571 0.0570962479608483 0.0555555555555556
37 0.0540540540540541 0.054014598540146 0.0526315789473684
39 0.0512820512820513 0.0512483574244415 0.05
41 0.0487804878048781 0.0487514863258026 0.0476190476190476
43 0.0465116279069767 0.0464864864864865 0.0454545454545455
45 0.0444444444444444 0.0444225074037512 0.0434782608695652
47 0.0425531914893617 0.0425339366515837 0.0416666666666667
49 0.0408163265306122 0.0407993338884263 0.04
51 0.0392156862745098 0.0392006149116065 0.0384615384615385
53 0.0377358490566038 0.0377224199288256 0.037037037037037
55 0.0363636363636364 0.0363516192994052 0.0357142857142857
57 0.0350877192982456 0.0350769230769231 0.0344827586206897
59 0.0338983050847458 0.0338885697874785 0.0333333333333333
61 0.0327868852459016 0.0327780763030629 0.032258064516129
63 0.0317460317460317 0.0317380352644836 0.03125
65 0.0307692307692308 0.0307619498343587 0.0303030303030303
67 0.0298507462686567 0.0298440979955457 0.0294117647058824
69 0.0289855072463768 0.0289794204115918 0.0285714285714286
71 0.028169014084507 0.028163427211424 0.0277777777777778
73 0.0273972602739726 0.0273921200750469 0.027027027027027
75 0.0266666666666667 0.0266619267685745 0.0263157894736842
77 0.025974025974026 0.0259696458684654 0.0256410256410256
79 0.0253164556962025 0.025312399871836 0.025



Chapter 3

Results and Future Work

3.1 Results

We investigated the security of the ∆ − IND − CPA game under the as-
sumptions A2 and A3 and showed that when the maximum padding length
n is divisible by ∆, the best security we can have is ε = ∆

n . Moreover, we
showed that this ε-security can be obtained when the random variable N
that defines the padding length is chosen as the uniform distribution.

Furthermore, when n is not divisible by ∆, we showed that for the op-
timal distribution the game is ε-secure where ∆

n ≥ ε ≥ 1

d n
∆e

. The upper

bound can always be achieved by selecting N as the uniform distribution
but it may not be possible to obtain the lower bound.

Finally, for ∆ = 2 and n is odd, we showed that ε = 2n
n2+1

which also
shows that the lower bound 1

d n
∆e

is unachievable for this case.

3.2 Future Work

Although we found tight bounds for the case when n is not divisible by ∆, we
do not know the optimal distribution and the corresponding best achievable
advantage for this case.

Moreover, we assumed that the assumption A2 holds throughout this
work and A2 is stronger than the assumption A1. Hence, one can minimize
the maximum advantage by replacing the assumption A2 with A1.
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