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ABSTRACT

IMPROBABLE DIFFERENTIAL CRYPTANALYSIS

TEZCAN, Cihangir

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Prof. Dr. Ersan Akyıldız

June 2014, 84 pages

We present a new statistical cryptanalytic technique that we call improbable differential
cryptanalysis which uses a differential that is less probable when the correct key is
used. We provide data complexity estimates for this kind of attacks and we also show
a method to expand impossible differentials to improbable differentials. By using this
expansion method, we cryptanalyze 13, 14, and 15-round CLEFIA for the key sizes of
length 128, 192, and 256 bits, respectively. These are the best cryptanalytic results on
CLEFIA up to this date.

We introduce a new criteria for evaluating S-boxes that we call undisturbed bits and
attack PRESENT and SERPENT by exploiting their S-boxes. Without using undisturbed
bits, the longest improbable differential attack we could find for PRESENT had a length
of 7-rounds. However, we show that PRESENT has 6 undisturbed bits and by using
them, we can construct 10-round improbable differentials and attack PRESENT re-
duced to 13 rounds. Similarly, without using undisturbed bits, the longest impossible
differential we could find on SERPENT had a length of 3.5 rounds. However, we ob-
tained four 5.5-round impossible differentials on SERPENT and provided a 7-round
improbable differential attack. Hence, undisturbed bits should be avoided by S-box
designers.

Moreover, we provide a second S-box property that we call differential factors. A
key recovery attack may not capture the whole subkey corresponding to a S-box with
a differential factor. This helps the attacker to guess less subkey bits and reduce the
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time complexity of the attack. By using differential factors, we show that 10, 11, and
12-round differential-linear attacks of Dunkelman et al. on SERPENT can actually be
performed with time complexities reduced by a factor of 4, 4, and 8, respectively.
Furthermore, we slightly reduce the data complexity of these attacks by changing the
differential with a more probable one but end up with an attack with higher time com-
plexity.

Keywords : cryptanalysis, block cipher, improbable differential, undisturbed bit, dif-
ferential factor
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ÖZ

OLASI OLMAYAN DİFERANSİYEL KRİPTANALİZ

TEZCAN, Cihangir

Doktora, Kriptografi

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Haziran 2014, 84 sayfa

Doğru anahtar kullanıldığında daha az ihtimalle gözlemlenen diferansiyeller kullanan
ve olası olmayan diferansiyel kriptanaliz ismini verdiğimiz yeni bir istatistiksel krip-
tanaliz tekniği sunuyoruz. Bu tür atakların veri karmaşıklığının yaklaşık olarak hesaplarını
ve imkansız diferansiyelleri olası olmayan diferansiyellere genişleten bir metod sunuy-
oruz. Bu genişletme tekniğiyle CLEFIA şifresinin 13, 14 ve 15 döngüsüne ataklar
sunuyoruz. Bu ataklar CLEFIA için bilinen en iyi ataklardır.

Değişim kutuları için rahatsız edilmemiş bit ismini verdiğimiz yeni bir özellik öneriyoruz
ve PRESENT ve SERPENT şifrelerine bu özelliği kullanarak saldırıyoruz. Rahatsız
edilmemiş bit kullanmadan PRESENT şifresinin en fazla 7 döngüsüne olası olmayan
diferansiyel atak yapabildik. Ama bu şifredeki 6 rahatsız edilmemiş bit sayesinde 10
döngülük olası olmayan diferansiyel ile 13 döngüsünü kırabiliyoruz. Benzer şekilde
rahatsız edilmemiş bit kullanmadan SERPENT şifresine en fazla 3.5 döngülük imkansız
diferansiyel bulabildik. Ama rahatsız edilmemiş bitler sayesinde 5.5 döngülük imkansız
diferansiyel elde ettik ve şifrenin 7 döngüsüne olası olmayan diferansiyel atak uygu-
layabildik. Bu nedenlerle değişim kutusu tasarımcılarının rahatsız edilmemiş bitlerden
kaçınmalarını tavsiye ediyoruz.

Sunduğumuz diğer bir değişim kutusu özelliği de diferansiyel faktörler. Anahtar elde
etme ataklarında diferansiyel faktörü olan değişim kutularına saldırırken, buradaki
anahtar bitlerinin bazılarını elde etmek mümkün olmayabilir. Bu özellik saldırıyı
gerçekleştirenin daha az anahtar bitini tahmin etmesine ve bu sayede atağın zaman
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karmaşıklığının azalmasına neden olacaktır. Diferansiyel faktörleri kullanarak SER-
PENT şifresine Dunkelman ve diğerlerinin yaptığı 10, 11 ve 12 döngülük diferansiyel-
lineer atakların zaman karmaşıklığının sırasıyla 4, 4 ve 8’de bire azaltılabileceğini
gösteriyoruz. Ayrıca bu ataklardaki diferansiyeli değiştirerek de daha az veri karmaşıklığı
ama daha fazla zaman karmaşıklığı gerektirecek şekilde bu atakları değiştiriyoruz.

Anahtar Kelimeler : kriptanaliz, blok şifre, olası olmayan diferansiyel kriptanaliz, ra-
hatsız edilmemiş bit, diferansiyel faktör
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Özen for their support and motivation.

I am grateful to my parents Hayri Tezcan and Sırma Tezcan and my brother Cem
Tezcan for always trusting and supporting me.
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CHAPTER 1

INTRODUCTION

Cryptology, the science of communication secrecy consists of two main components,
cryptography and cryptanalysis. Cryptography is the science of designing secure ci-
phers and cryptanalysis is the science of analyzing the security of ciphers by trying to
find weaknesses in the design. But nowadays, the words cryptology and cryptography
are used interchangeably.

A cipher makes a message unreadable to anyone except those having the key by using
an algorithm. More formally, let P denote the message space, which contains strings
of symbols of a predetermined alphabet and C denote the ciphertext space which also
contains strings of symbols of a predetermined alphabet.

An element p of P is called a plaintext and an element c of C is called a ciphertext. Let
K denote the key space that contains strings of predetermined size. An element k of K
is called a key. A one-to-one function Ee from P to C, which is uniquely determined
by e is called an encryption function. One-to-one property is necessary since we want
to reverse the process. A one-to-one function Dd from Ee(P ) ⊂ C to P , which is
uniquely determined by d is called a decryption function.

A cipher or an encryption scheme contains an encryption function Ee and a decryption
function Dd where e, d ∈ K and d is uniquely determined for any e.

If e and d are equivalent or one of them can be easily obtained from the other in a cipher
(by “easily”, we mean “in logarithmic time”), that scheme is called a symmetric-key
scheme or symmetric-key encryption. Two main symmetric-key encryption schemes
are block ciphers and stream ciphers.

1.1 Block Ciphers

In a block cipher, the message p is divided into fixed length strings which are called
blocks and the encryption function encrypts a single block at a time. Generally, the
encryption is done by iterating the round function of the cipher for r many times where
r is a predetermined integer.

Theory of block ciphers is well investigated and a lot of block ciphers are proposed.
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Although most of these block ciphers have different designs, they can be roughly cat-
egorized as Feistel Networks and Substitution-Permutation Networks (SPNs).

In Feistel networks, a round consists of dividing the input into two halves, applying
the round function to one half using a subkey, exclusive-oring (XOR) the output of the
round function with the other half and swapping the two halves. There is no need to
do the swapping operation in the last round since it would not have any effect on the
security of the cipher. These two halves are referred to as data lines and generalized
Feistel ciphers contain more than two data lines. The CLEFIA cipher that is described
in Section 1.1.3 is an example for a generalized Feistel structure with four data lines.

Encryption and decryption is identical in Feistel networks except for the order of the
subkeys. A Feistel cipher is called unbalanced if the divided parts are not of equal size
and this kind of constructions are investigated in [64].

SPN uses substitution boxes (S-boxes) and permutation boxes (P-boxes) where an n×
m S-box substitutes n bits with m bits and a P-box permutes the bits. Generally in
a SPN a round consists of XORing the input with a subkey, applying S-boxes and
then P-boxes. The output of the last round is also XORed with a subkey. The ciphers
PRESENT and SERPENT that are described in Sections 1.1.1 and 1.1.2 are examples
for SPNs.

The Feistel network is named after Horst Feistel who did important research in this
area and proposed Lucifer [70] cipher with Don Coppersmith which is a Feistel net-
work. The Data Encryption Standard (DES) [33], which is a revised version of Lucifer
algorithm, is designed by an IBM team in 1974 and it is adopted as national standard
in 1977 by National Bureau of Standards (which is known as National Institute of
Standards and Technology (NIST) today). DES is an example of a Feistel cipher.

Since the advances in technology result in faster central processing units, 56-bit key
of DES was becoming vulnerable to brute force attacks in which the attacker tries
every possible key. For this reason, on January 2, 1997, NIST announced a request
for candidate algorithms for the Advanced Encryption Standard (AES) which would
support 128, 192 and 256-bit keys. 15 algorithms were submitted to the competition
and on October 2, 2000, NIST announced that the winner of the AES competition is
Rijndael [32], which is designed by Daemen and Rijmen. AES is also an SPN.

1.1.1 PRESENT

PRESENT [39] was designed in 2007 by Andrey Bogdanov, Lars R. Knudsen, Gregor
Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and
C. Vikkelsoe. It was adopted as an International Standard by ISO/IEC 29192-2:2012
[39] for lightweight cryptography, together with CLEFIA.

PRESENT is a 31-round SPN (Substitution Permutation Network) type block cipher
with block size of 64 bits that supports 80 and 128-bit secret key. We represent k-bit
keyed PRESENT as PRESENT-k. Round function of PRESENT, which is depicted in
Figure 1.1, is same for both versions of PRESENT and consists of standard operations
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such as subkey XOR, substitution and permutation: At the beginning of each round,
64-bit input of the round function is XORed with the subkey. Just after the subkey
XOR, 16 identical 4× 4-bit S-boxes S(x) are used in parallel as a non-linear substitu-
tion layer and finally a permutation is performed so as to provide diffusion.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S
15

S
14

S
13

S
12 11

S S
10

S S S S S S S S S S
89 7 6 5 4 3 2 1 0

K
i

Figure 1.1: Round function of PRESENT

The subkeys for each round are derived from the user-provided secret key by the key
scheduling algorithm. We provide only the details of the key scheduling algorithm of
PRESENT-80 as it is the version we attack in this thesis: 80-bit secret key is stored in a
key register K and represented as k79k78 . . . k0. The subkeys Ki (0 ≤ i ≤ 31) consist
of 64 leftmost bits of the actual content of register K. After round key Ki is extracted,
the key register K is rotated by 61 bit positions to the left, then S-box is applied to the
left-most four bits of the key register and finally the round counter value, which is a
different constant for each round, is XORed with bits k19k18k17k16k15. Further details
about the specification of PRESENT are provided in [23].

1.1.2 SERPENT

SERPENT [3] was designed by Anderson, Biham and Knudsen in 1998. It was submit-
ted to AES contest and came second after Rijndael. It has a block size of 128 bits and
accepts any key size of length 0 to 256 bits. It is a 32-round SPN, where each round
consists of key mixing, a layer of S-boxes and a linear transformation.

The 128-bit input value before round i is denoted by B̂i, i ∈ {0, . . . , 31}. Each B̂i is
composed of four 32-bit words X0, X1, X2, X3 where X0 is the leftmost word.

Three round operations are specified as follows:

1. Key Mixing: At each round Ri, a 128-bit subkey Ki is XORed with the current
intermediate data B̂i.

2. S-boxes: At each round, Ri uses a single S-box Sj , where i ≡ j (mod 8) and
i ∈ {0, . . . , 31}, 32 times in parallel. In this thesis, we use the bitsliced ver-
sion of SERPENT. For example, in the first round the first copy of S0 takes the
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least significant bits fromX0, X1, X2, X3 and returns the output to the same bits.
Thus, we obtain 32 4-bit slices referred as bi’s, where i ∈ {0, . . . , 31} and b0 is
the right most slice.

3. Linear Transformation: The four 32-bit wordsX0, X1, X2, X3 are linearly mixed
by the following linear operations:

X0 := X0 ≪ 13
X2 := X2 ≪ 3
X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 � 3)
X1 := X1 ≪ 1
X3 := X3 ≪ 7
X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 � 7)
X0 := X0 ≪ 5
X2 := X2 ≪ 22

B̂i+1 := X0, X1, X2, X3

where ≪ denotes the left rotation operation and� denotes the left shift opera-
tion.

32-round SERPENT cipher may be described by the following equations:

B̂0 := P B̂i+1 := Ri(B̂i), i ∈ {0, . . . , 31} C := B̂32

where

Ri(X) = LT (Ŝi(X ⊕Ki)), i ∈ {0, . . . , 30}
R31(X) = Ŝ31(X ⊕K31)⊕K32

and Ŝi is the application of the S-box S(i (mod 8)) 32 times in parallel, and LT is the
linear transformation.

The key scheduling algorithm of SERPENT takes a 256-bit key as an input. If the key
is shorter, then it is padded by a single bit of 1 and the remaining part is padded by bits
of 0 up to 256 bits. By using an affine recurrence, the 256-bit key is used to construct
132 prekeys having length of 32 bits. The S-boxes are used to produce 32-bit keywords
from prekeys. The round keys are obtained by combining these keywords.

1.1.3 CLEFIA

We use the notations provided in Table 1.1 in the following sections.

CLEFIA [68] was designed in 2007 by SONY Corporation and was adopted as an
International Standard by ISO/IEC 29192-2:2012 [39] for lightweight cryptography,
together with PRESENT.
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Table 1.1: Notation

a(b) b denotes the bit length of a
a|b Concatenation of a and b
[a, b] Vector representation of a and b
at Transposition of a vector a
a⊕ b Bitwise exclusive-OR (XOR) of a and b
[x{i,0}, x{i,1}, x{i,2}, x{i,3}] i-th round output data
∆a XOR difference for a

CLEFIA is a 128-bit block cipher having a generalized Feistel structure with four data
lines. For the key lengths of 128, 192, and 256 bits, CLEFIA has 18, 22, and 26 rounds.
Each round contains two parallel F functions, F0 and F1 and their structures are shown
in Fig. 1.2 where S0 and S1 are 8 × 8-bit S-boxes. The two matrices M0 and M1 that
are used in the F-functions are defined as follows.

M0 =

 0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

 , M1 =

 0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01

 .

The encryption function uses four 32-bit whitening keys (WK0, WK1, WK2, WK3)
and 2r 32-bit round keys (RK0, . . . , RK2r−1) where r is the number of rounds. We
represent the bytes of a round key as RKi = RKi,0|RKi,1|RKi,2|RKi,3. The encryp-
tion function ENCr is shown in Fig. 1.3.

1.2 Cryptanalysis of Block Ciphers

One might choose to keep the encryption algorithm secret to increase the security.
However in history, it is observed that secret algorithms obtained by reverse engineer-
ing, betrayal and espionage. Hence it is a good idea to assume that the security of the
encryption algorithm should rely on the secrecy of the key, which is also know as the
Kerckhoffs’ Principle.

The most trivial way to attack a block cipher is to try every key in the key space. This
is known as exhaustive search or brute force attack. This can be done by obtaining a
few plaintexts and corresponding ciphertexts and encrypting these plaintexts by every
possible key (this makes the attack a known-plaintext attack). If a key encrypts the
plaintext to the previously known ciphertext, then that key becomes a candidate but
sometimes it may not be the correct secret key. Such a case is called a false alarm. This
is why we need to test that candidate key on more than one plaintext. A similar attack
can be done by only decrypting the ciphertexts and checking whether the obtained
plaintexts are something meaningful in the language that the plaintexts are suspected
to be written. In that sense the attack becomes a ciphertext-only attack.

Note that exhaustive search is a generic method and it can be applied to any block
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cipher. For this reason the key space is kept large in the design of block ciphers to
avoid brute force attacks. The length of the key depends on the computational power
of computers which depends on the current technology.

If the block size of a block cipher is b and if we know 2b plaintexts and corresponding
ciphertexts, this means that although we do not know the key, given a plaintext we
can find the corresponding ciphertext or vice versa. This generic attack is known as
dictionary attack or table attack.

A cipher is considered broken if an attack is given which finds the secret key faster
than exhaustive search and uses less data than dictionary attack. If the attack is still
infeasible, it is called a theoretical attack and otherwise, it is called a practical attack.

Most of the attacks in the literature requires additional knowledge about the system
which determines the type of the attack:

• Ciphertext-only attack (CO): In this kind of attacks, the attacker has the knowl-
edge of some ciphertexts which are encrypted by the unknown secret key.

• Known-plaintext attack (KP): In known-plaintext attacks, the attacker has the
knowledge of some plaintexts and corresponding ciphertexts.

• Chosen-plaintext (ciphertext) attack (CP): In this scenario, the attacker has
the knowledge of some plaintexts having some particular structure of her choice
and corresponding ciphertexts. Similarly for chosen-ciphertext attack, the at-
tacker has the knowledge of some ciphertexts having some particular structure
of her choice and corresponding plaintexts.

• Adaptive chosen-plaintext (ciphertext) attack (ACP): This type of attack is
similar to chosen plaintext attack. However this time, the chosen plaintexts
depends on the results of the previous encryptions of plaintexts. Similarly for
adaptive chosen-ciphertext attack, the chosen ciphertexts depends on the results
of the previous decryptions of ciphertexts.

In the following sections we discuss some non-generic cryptanalysis techniques and
the following definitions are necessary for these sections:

Definition 1.1. Let b be the block size of a block cipher. Then under a key, the en-
cryption function becomes a bijective function from a set with 2b elements to itself.
In order to find a weakness for a cipher, the encryption function is compared with a
random bijective function from and to the same set with 2b elements. In the concept of
cryptanalysis, such a function is referred to as a random permutation.

Definition 1.2. Statistical attacks on block ciphers make use of a property of the cipher
so that an event occurs with a different probability than a random permutation. Such a
property is called a distinguisher since it can be used to distinguish the cipher from a
random permutation.

Definition 1.3. Distinguishing a cipher from a random permutation is referred to as a
distinguishing attack.
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Distinguishers or distinguishing attacks are important in two ways:

1. In some attack scenarios, the attacker may capture some input and output from
the system but does not know which cipher is used or whether these outputs
come from a cipher at all. In such a case, if the attacker has a distinguisher for a
cipher and captured enough data, then they can use it to determine whether they
belong to the cipher or not.

2. If an attacker captures some plaintexts and corresponding ciphertexts that are
encrypted via a secret key, it may be possible for the attacker to extract some
information about the secret key by extending the distinguisher, generally by
adding a few rounds to the top or the bottom of the distinguisher. Hence, most
attacks start with a distinguisher.

1.2.1 On Hiding a Plaintext Length

Note that in a block and stream ciphers, the length of the plaintext and the length of
the corresponding ciphertext are the same. Although this does not introduce a weak-
ness in general, in certain cases information may leak because of this. That is, if an
eavesdropper listens to an encrypted communication and if they know what the com-
munication is about, then they can guess what the plaintext is by looking at the length
of the ciphertext. For example, when some forms on the internet are filled by a user,
the data is sent encrypted. Since the eavesdropper knows the questions asked in the
form, by looking at the lengths of the answers, they can guess what the answers are.

In order to hide the length of the plaintexts, some bits in random lengths can be ap-
pended to the end of the plaintexts. We investigated how much security we get for
appending random length bits in [79]. This kind of investigation is beyond the scope
of this thesis and will not be further considered.

1.3 Complexity

Attacks are compared with the amount of resources they require. These resources are
defined as data complexity, time complexity and memory complexity:

• Data Complexity: The amount of plaintexts or ciphertexts that is required to
perform the attack.

• Memory Complexity: The amount of storage required to perform the attack.

• Time Complexity: The amount of time required to perform the attack. Most of
the time, it is measured by the number of encryptions or memory accesses.

In the case of exhaustive search, if the secret key is m bits, then the time complexity
is 2m encryptions. The attack requires a few plaintexts or ciphertexts and the storage
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is required only for the values that are used in the encryption (or decryption) process.
Hence the data and memory complexities are negligible.

In the case of dictionary attack, if we put every ciphertext and plaintext in a table, such
an attack has 2b data complexity, 2b memory complexity and negligible time complex-
ity.

1.4 Differential Cryptanalysis

Differential cryptanalysis [12] was discovered by Biham and Shamir in late 1980s and
it is used to attack various block ciphers, stream ciphers and hash functions. Although
it is claimed that agencies of some countries already knew this technique years before
its discovery by Biham and Shamir, theirs is the first public announcement of this
method. This technique breaks DES theoretically.

Differential cryptanalysis is a statistical chosen-plaintext attack and it considers differ-
ential relations between inputs and outputs for r consecutive rounds, for some integer r.

When two different inputs are encrypted with the secret key, the probability of the
difference of the corresponding outputs to be β, for some β, is p = 2−b where b is
the block size. If an α difference in input blocks results in β difference in the output
blocks after r rounds of encryption with a probability p0 higher than 2−b, we call this
relation an r-round differential characteristic. A differential characteristic with high
probability is used to distinguish the correct subkeys from the wrong ones.

Today, differential cryptanalysis plays an important role in the design of blocks ciphers
and designers make their algorithms resistant to this attack by giving an upper bound
to the probability of r-round differentials [58].

In 1994, Knudsen discovered truncated differential cryptanalysis [41] which is an ex-
tension of differential cryptanalysis in which the differences are not fully specified.

1.5 Truncated Differential Cryptanalysis

In 1994, Knudsen discovered truncated differential cryptanalysis [41] which is an ex-
tension of differential cryptanalysis in which the differences are not fully specified.
Because of this change, main difference between classical differential attacks and trun-
cated differential attacks is the ratio of p and p0. That is, most of the time we have
p0
p
≥ 4 in differential attacks and p0

p
≈ 1 in truncated differential attacks.
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1.6 Differential-Linear Cryptanalysis

In 1994, Langford and Hellman combined differential cryptanalysis with linear crypt-
analysis and introduced differential-linear cryptanalysis [47]. They suggested using
a truncated differential with probability 1 and concatenating a linear approximation
with bias q (i.e. probability 1/2 + q) where the output difference of the differential
should contain zero differences in the places where input bits masked in the linear
approximation. This way one can construct differential-linear distinguishers and the
data complexity of the distinguisher is O(q−4) chosen plaintexts. The exact number
depends on the success probability and the number of possible subkeys.

Moreover, Biham, Dunkelman and Keller showed that it is possible to construct a
differential-linear distinguisher where the differential holds with probability p < 1 and
introduced enhanced differential-linear cryptanalysis [9]. They also showed that the
attack is still applicable if the XOR of the masked bits of the differential is 1. In the
enhanced method, the data complexity becomes O(p−2q−4) chosen plaintexts.

1.7 Impossible Differential Cryptanalysis

The cryptanalytic technique of impossible differential attack is discovered by Biham,
Biryukov and Shamir and it is first presented at Rump Session of CRYPTO 1998 by
Shamir [4]. Later on in [6], they presented this technique by giving an attack that
breaks Skipjack [57] reduced from 32 to 31 rounds. They also used this technique to
break reduced round version of IDEA [46] and Khufu [55] in [5]. Independently in
1998, in his proposal [40] for AES, Knudsen gave an attack to 6-round DEAL [40]
which is similar to impossible differential cryptanalysis.

Impossible differential cryptanalysis uses an impossible differential which is a trun-
cated differential that holds with probability 0. One way of obtaining such a differential
is the miss-in-the-middle technique, that is the combination of two truncated differen-
tials both of which hold with probability 1 and do not meet in the middle. That is, if
a difference α becomes β after r1 rounds of encryption and a difference δ becomes γ
after r2 rounds of decryption and if β 6= γ, we conclude that the difference α cannot
become δ after r1 + r2 rounds of encryption. i.e. α→ β 6= γ ← δ.

An impossible differential obtained with a miss-in-the-middle technique works as a
sieve in the procedure. If under a subkey that impossible differential holds, it means
that the corresponding subkey is not the correct subkey and we eliminate it.

As in the case of differential cryptanalysis, impossible differential attacks are chosen
plaintext attacks.

An impossible differential on r rounds of a block cipher can be used to distinguish a
random permutation f from r-round version of that cipher. Assume an α difference
cannot produce β diffrence after r rounds of encryption. If an input pair of f has the
difference α and the corresponding output difference is β, then it is obvious that f
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is not the r-round version of the cipher. If difference β is not observed, the number
of pairs should be increased enough to be sure that f is not a random permutation.
This number of pairs depends on the block size of the cipher and the structure of the
differential.

For example, assume that the block size is n and the β difference has fixed k bits
(hence n − k bits of β can be anything). For a random pair, the probability of not
observing the β difference is 1− 2−k. Therefore if we use 2p pairs and do not observe
the β difference, the probability of incorrectly identifying a random permutation as
the r-round version of the cipher becomes (1 − 2−k)2

p . Hence, we must choose the
value of p larger than k to make this probability close to 0. For small values of k, this
probability can be calculated easily with a computer. For large values, the following
approximation can be used:(

1− 1

2k

)c·2k
=

((
1− 1

2k

)2k
)c

≈
(

1

e

)c
=

1

ec
. (1.1)

This approximation can be obtained by substituting −1 for x in the formal limit defi-
nition of exponential function which is

ex = lim
n→∞

(
1 +

x

n

)n
. (1.2)

1.8 Structures

When constructing plaintext pairs, the idea of structures is generally used in differen-
tial attacks. Assume that the α difference has x many 0 bits and y many undetermined
bits and the block size n is x + y. Fixing the bits in the places where α has no differ-
ence is called a structure. Now we can construct 2y different blocks which is in this
structure and any two blocks of this structure has difference α. Hence the maximum
number of pairs we can obtain from this structure is(

2y

2

)
=

2y · (2y − 1)

2
= 22y−1 − 2y−1 ≈ 22y−1. (1.3)

Since we have 2x different structures, approximately 22y−1 · 2x = 22y+x−1 different
pairs can be constructed at most. Note that if we replace one or more of the zeros with
ones in the difference α, the maximum number of pairs that can be obtained becomes
exactly 22y+x−1.

1.9 Data Complexity and Success Probability Estimates

Statistical attacks on block ciphers make use of a property of the cipher so that an event
occurs with a different probability than a random permutation and such a property is
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called a distinguisher since it can be used to distinguish the cipher from a random
permutation.

Moreover, if an attacker captures some plaintexts and corresponding ciphertexts that
are encrypted via a secret key, it may be possible for the attacker to extract some
information about the secret key by extending the distinguisher, generally by adding a
few rounds to the top or the bottom of the distinguisher. Hence, most attacks start with
a distinguisher.

For instance, differential cryptanalysis [41] considers characteristics or differentials
which show that a particular output difference should be obtained with a relatively
high probability when a particular input difference is used. Hence, when the correct
key is used, the predicted differences occur more frequently. In a classical differential
characteristic the differences are fully specified and in a truncated differential [41] only
parts of the differences are specified.

On the other hand, impossible differential cryptanalysis [6] uses an impossible differ-
ential which shows that a particular difference cannot occur for the correct key (i.e.
probability of this event is exactly zero). Therefore, if these differences are satisfied
under a trial key, then it cannot be the correct one. Thus, the correct key can be ob-
tained by eliminating all or most of the wrong keys.

The main idea behind the statistical attacks is to gather N plaintext-ciphertext pairs
and check the occurrence of the distinguisher when the pairs are partially encrypted or
decrypted under every possible subkey. Let p0 denote the probability of observing the
distinguisher when a pair is tried with the correct key and let p be the probability of
satisfying the distinguisher for a random permutation. In order to perform the attack,
we assume that the wrong keys act like a random permutation. That is, the probability
of observing the distinguisher is the same, namely p, for every wrong subkey. This
assumption is commonly referred to as the Wrong-Key Randomization Hypothesis.

Thus, if we keep the count of obtaining the distinguisher for every key, the number of
hits a wrong subkey gets can be seen as a random variable of binomial distribution X
with parameters N and p. Similarly, the number of hits the correct subkey gets can
be seen as a random variable of binomial distribution X0 with parameters N and p0.
It is possible to distinguish the cipher from a random permutation or distinguish the
correct subkey from the wrong ones when the difference between the expected values
of these two distributions E = N · p and E0 = N · p0 is big enough. That is, we would
like to have a threshold T somewhere between E and E0 and expect the counter of the
correct key to be on the side of E0 together with none or a small number of counters
corresponding to wrong keys. Thus, the keys with counters on the right side of the
threshold are candidates for the correct key and the correct one can be obtained by
exhaustively trying every possibility for the remaining key bits that are not attacked.

Definition 1.4. The case of the correct key having a counter on the wrong side of the
threshold T is called non-detection and its probability is denoted by pnd.

Definition 1.5. The case of a wrong key having a counter on the right side of the
threshold T is called false alarm and its probability is denoted by pfa.
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Note that an attack is successful if the correct key’s counter end up in the right side of
the threshold. Thus, the success probability of an attack can be calculated as 1 − pnd.
Moreover, for every false alarm, we need to do the same work that we do for the correct
key. So having high pfa increases the time complexity of the attack. Therefore, the at-
tacker desires pnd and pfa to be very small. Increasing N decreases non-detection and
false alarm probabilities because the difference between E and E0 gets larger. How-
ever, increasing N also means increasing the data complexity of the attack. Since we
repeat the attack process for every plaintext-ciphertext pair, increasing N also results
in increased time complexity. Therefore, there should exist a value of N that provides
the optimal time complexity.

In most of the statistical attacks the distinguisher is more probable for the cipher than a
random permutation. In other words, we have p0 > p. Impossible differential attack is
an exception for this case since p0 = 0 in impossible differential attacks. In this thesis,
we will introduce a new cryptanalytic technique that we call improbable differential
cryptanalysis in which we have p0 < p. Thus, impossible differential cryptanalysis is
just a special case of the improbable differential cryptanalysis. Since all the previous
work on estimating data complexity and success probability is done for the case of
p0 > p, for the rest of this section we assume p0 > p.

Since the counters we keep for the keys follow binomial distributions, we can calculate
pnd and pfa as follows:

pnd =
T∑
i=0

(
N

i

)
pi0 · (1− p0)N−i (1.4)

pfa =
N∑
i=T

(
N

i

)
pi · (1− p)N−i (1.5)

In order to find an optimal N for a desired success probability, one needs to compute
these probabilities several times. However, for theoretical attacks N can be very large
and p0 and p can be very small. For instance, to attack a block cipher with a block size
of b bits, N can be as large as 22b−1 and p and p0 can be as small as 2−b. Therefore,
it may be infeasible to compute these probabilities for many parameters. Thus, we
require fast formulas to estimate pfa and pnd.

In [59], Biham and Shamir observed a strong relation between the signal-to-noise ratio
and the success chance of an attack. Signal-to-noise ratio can be defined as follows:

Definition 1.6 ([66]). An important measure for the success of a differential attack is
the proportion of the probability of the right key being suggested by a right pair to the
probability of a random key being suggested by a random pair with the given initial
difference. This proportion is called the signal-to-noise ratio.

In most of the attacks, directly finding the correct key requires more data and time than
eliminating most of the wrong keys. For this reason, we define advantage:
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Definition 1.7 ([66]). If an attack on an m-bit key gets the correct value ranked among
the top r out of 2m possible candidates, we say the attack obtained an (m− log(r))-bit
advantage over exhaustive search.

Although linear [52] and differential cryptanalysis [12] were introduced as early as
the beginning of 1990s, they lacked a robust treatment of their success probability
until Selçuk’s analytical calculations [66]. Selçuk uses normal approximation of the
binomial law to provide formulas of the success probability and he considers “success”
as the case where the correct key is within a set of high-ranking candidates, which
is referred as advantage. Selçuk’s formulas for the differential cryptanalysis are as
follows:

Theorem 1.1 ([66]). Let ps be the success probability that a differential attack on an
m-bit key, with a characteristic of probability p0 and signal-to-noise ratio SN and with
N plaintext-ciphertext pairs, delivers an a-bit or higher advantage. Assuming that the
key counters are independent and that they are identically distributed for all wrong
keys, we have, for sufficiently large m and N , and µ denoting p0N ,

ps = Φ

(√
µSN − Φ−1(1− 2−1)√

SN + 1

)
. (1.6)

Above formula provides the success probability when the number of plaintext-ciphertext
pairs N is fixed. It can be modified to obtain a formula that provides the required N to
perform a differential attack with a fixed success probability ps as follows:

Corollary 1.2 ([66]). With the assumptions of Theorem 1.1,

N =
(
√
SN + 1Φ−1(ps) + Φ−1(1− 2−a))2

SN
p−10 (1.7)

plaintext-ciphertext pairs are needed in a differential attack to accomplish an a-bit
advantage with a success probability ps.

One main difference between classical differential attacks and truncated differential
attacks is the ratio of p and p0. That is, most of the time we have p0

p
≥ 4 in differential

attacks and p0
p
≈ 1 in truncated differential attacks. This is one of the reasons why

Selçuk’s formulas are not applicable to truncated differential attacks. We also have
p0
p
≈ 1 for the improbable differential attacks that we are going to introduce in Chapter

4 of this thesis and therefore, we cannot use these formulas for improbable differential
cryptanalysis, too.

In [18, 20], Blondeau et al. provided accurate estimates of the data complexity and
success probability for linear, differential and truncated differential attacks. We first
recall the Kullback-Leibler divergence which is used in Blondeau et al.’s estimations.

Definition 1.8 (Kullback - Leibler divergence [29]). Let P and Q be two Bernoulli
probability distributions of parameters p and q. The Kullback - Leibler divergence
between P and Q is defined by

D(p||q) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
. (1.8)
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Instead of using a normal approximation, Blondeau et al. relied on the following
simple and general approximation of the binomial distribution.

Theorem 1.3 ([2]). Let p0 and p be two real numbers such that 0 < p < p0 < 1 and let
τ such that p < τ < p0. Let X0 and X follow a binomial law of respective parameters
(N, p0) and (N, p). Then as N →∞,

P (X ≥ τN) ∼ (1− p0)
√
τ

(τ − p)
√

2πN(1− τ)
e−ND(τ ||p), (1.9)

and

P (X0 ≤ τN) ∼ p0
√

1− τ
(p0 − τ)

√
2πNτ

e−ND(τ ||p0). (1.10)

In order to obtain the required number of plaintext-ciphertext pairsN and the threshold
T for many cryptanalytic techniques, the following Blondeau-Gerard-Tillich algorithm
takes p, p0, pfa, and pnd as input and outputsN and τ , which is a relative threshold τ =
T
N

. In this algorithm, the estimates for non-detection and false alarm error probabilities
are denoted by Gnd(N, τ) and Gfa(N, τ).

Algorithm 1.1. ([18])
Input : p0, p, pnd, pfa
Output : N , τ
τmin := p, τmax := p0
r ep ea t

τ := τmin+τmax

2
Compute Nnd such t h a t ∀N > Nnd , Gnd(N, τ) ≤ pnd
Compute Nfa such t h a t ∀N > Nfa, Gfa(N, τ) ≤ pfa
i f Nnd > Nfa then τmin = τ
e l s e τmax = τ

u n t i l Nnd = Nfa
N := Nnd
Return N , τ

Blondeau et al. assumed p0 > p in [18] because improbable differential cryptanalysis
was not introduced yet. Thus, this algorithm cannot be used directly for improbable
differential cryptanalysis. After introducing improbable differential cryptanalysis in
Chapter 4, we also modify these results to obtain accurate estimates of data complexity
and success probability for improbable differential cryptanalysis.

1.10 S-box Analysis

S-boxes are commonly used as non-linear components for symmetric cryptosystems
and hash functions. Properties of S-boxes provide resistance against many cryptana-
lytic techniques.

15



1.10.1 Differential Uniformity

Definition 1.9. For a mapping S : F n
2 → Fm2 , and all ∆i ∈ Fn2 and ∆o ∈ Fm2 , let

t be the number of elements x that satisfy S(x ⊕ ∆i) = S(x) ⊕ ∆o. Then t/|2n| is
the differential probability of the characteristic S(∆i → ∆o). The table that lists all t
values for every i, o ∈ X is called the Difference Distribution Table (DDT).

The maximum value in a DDT, excluding the zero difference case, is called differential
uniformity. S-box designers aim to minimize differential uniformity since differential
cryptanalysis [12] uses characteristics with high differential probability.

1.10.2 Non-linear Uniformity

Definition 1.10. For a mapping S : Fn2 → Fm2 , and all a ∈ Fn2 and b ∈ Fm2 , let the
numbers Lf (a, b) be defined as

Lf (a, b) := |#{x ∈ F n
2 |a · x = b · S(x)} − 2n−1|

where a · b denotes the parity of the bit-wise product of a and b. Then S is called
non-linearly l-uniform if Lf (a, b) ≤ l for all a and b with b 6= 0.

S-box designers aim to minimize the non-linear uniformity l since linear cryptanalysis
[52] uses linear approximations with high bias.

1.10.3 Branch Number

Definition 1.11. [63] The branch number of an n× n S-box is

BN = min
a,b 6=a

(wt(a⊕ b) + wt(S(a)⊕ S(b))),

where a, b ∈ X and wt(a) is the Hamming weight of the bit vector a.

For a bijective S-box, the branch number is at least 2 and this property of S-boxes is
closely related to algebraic [28] and cube attacks [34].

1.10.4 Number of Shares

S-boxes are also studied for their security against side-channel attacks. Side-channel
attacks are based on the information leakage during the computation of the hardware
implementation of a cryptographic algorithm. For instance, differential power analysis
(DPA) [44] exploits the correlation between the instantaneous power consumption of a
device and the intermediate results of a cryptographic algorithm. One countermeasure
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against side-channel attacks is threshold implementation in which a variable is split
into additive shares. Bilgin et al. analyzed the number of shares of S-boxes by catego-
rizing all 3× 3 and 4× 4 S-boxes using affine equivalence classes and investigated the
cost of this kind of protection in [14].

In Chapters 2 and 3, we are going to introduce two new S-box criteria that are related
to differential, differential-linear, truncated differential, impossible differential, and
improbable differential cryptanalysis.

1.11 Our Contribution and the Structure of the Thesis

In most of the differential cryptanalysis techniques, the distinguisher is more probable
for the cipher than a random permutation. In other words, we have p0 > p. The only
exception is the impossible differential cryptanalysis in which we have p0 = 0. In this
thesis, we bridge the gap by introducing improbable differential cryptanalysis in which
we have p0 < p.

Moreover, we introduce two new S-box evaluation criteria:

1. Undisturbed Bits: Undisturbed bits are probability 1 truncated differentials for
S-boxes and they can be used for constructing longer or better truncated, impos-
sible, or improbable differentials.

2. Differential Factors: Differential factors are key differences for ciphers with
key XOR before the S-box where the output difference of the S-box is invariant.
An attacker cannot capture the whole key when there is a differential factor but
this also reduces the work of the attacker.

This thesis is organized as follows: Undisturbed bits are introduced in Chapter 2 and
S-boxes that are used in cryptographic algorithms that contain undisturbed bits are
listed. Differential factors are introduced in Chapter 3 and S-boxes that are used in
cryptographic algorithms that contain differential factors are listed. In Chapter 4, we
introduce the improbable differential cryptanalysis and modify Blondeau et al.’s al-
gorithm and formulas to have accurate estimates for the data complexity and success
probability of improbable differential attacks. In Chapter 5, we provide 12 and 13-
round improbable differential attacks on PRESENT using the undisturbed bits of its
S-box. In Chapter 6, we provide 12, 13, and 14 round improbable differential attacks
on CLEFIA which are the best known attacks on this cipher. In Chapter 7, we pro-
vide a 7-round improbable differential attack on SERPENT using the undisturbed bits
of its S-boxes. Moreover, we correct the advantage and improve the time complex-
ity of Dunkelman et al.’s differential-linear attacks by using the differential factors of
SERPENT.
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CHAPTER 2

UNDISTURBED BITS

We introduce undisturbed bits in this chapter. They are probability 1 truncated differ-
entials for S-boxes and they can be used for constructing longer or better truncated,
impossible, or improbable differentials. We published parts of this chapter in [77].

Definition 2.1. Depending on the design of an S-box, when a specific difference is
given to the input (resp. output), difference of at least one of the output (resp. input)
bits of the S-box may be guessed with probability 1. We call such bits undisturbed.

We start by showing that every invertible 3× 3 S-box contains undisturbed bits.

Proposition 2.1. Every bijective 3× 3 S-box contains undisturbed bits.

Proof. There are 8! = 40320 different bijective 3× 3 S-boxes. If we count the number
of undisturbed bits of an S-box together with the undisturbed bits of its inverse, one
can check that 17088 of them have 6, 10368 of them have 12, 6336 of them have 18,
3456 of them have 24, 1728 of them have 30, and 1344 of them have 42 undisturbed
bits.

In the proof, we also considered the undisturbed bits of the inverse of the S-boxes
because in SPNs, the inverse of the S-box is used for decryption. Note that in [77],
we tried to give a simple, non-computer aided proof for Proposition 2.1 by considering
the all 4 equivalence classes of bijective 3 × 3 S-boxes. In that proof, we made the
assumption that every 3 × 3 S-box of the same affine equivalence class has the same
number of undisturbed bits. However, there are some exceptions to this assumption
and they were overlooked in that proof.

PRINTcipher’s S-box [43] and SEA’s S-box [71] are 3 × 3 S-boxes that we observed
in a cryptographic algorithm and they have 6 undisturbed bits. They are provided in
Table 2.1. Although every possible 3 × 3 S-box contains undisturbed bits, note that a
4× 4 S-box does not necessarily have undisturbed bits. For instance, we observed that
six out of eight 4 × 4 S-boxes of the block cipher SERPENT [3] have 30 undisturbed
bits in total and two of its S-boxes have no undisturbed bits. In our literature search we
found 101 4×4 S-boxes that are used in block ciphers and hash functions and observed
that 68 of them have 393 undisturbed bits in total. They are provided at the end of this
chapter in Table 2.7. Note that some S-boxes are re-used by different algorithms. For

19



instance, S-box of PRESENT is also used in LED [38] and one of SERPENT’s S-box S2

is also used in HAMSI [86].

Moreover, we analyzed the 6× 4 S-boxes of DES and 8× 8 S-boxes of AES, Anubis,
Aria, Camellia, CLEFIA, Crypton, E2, Grand Cru, Hierocrypt, ICEBERG, Khazad,
Sarmal, SEED, and SMS4 and we did not observe any undisturbed bits. Finally, we
tested the 5× 5 and 6× 6 S-boxes of FIDES and 7× 7 and 9× 9 S-boxes of KASUMI
and MISTY and observed that FIDES’s S-boxes and the 9 × 9 S-boxes of KASUMI
and MISTY contain undisturbed bits. They are listed in Tables 2.2, 2.3, and2.4.

Table 2.1: Undisturbed Bits of 3× 3 S-boxes

S-box Input Output
PRINTcipher [43] 1x ??1
PRINTcipher [43] 2x ?1?
PRINTcipher [43] 4x 1??
PRINTcipher−1 [43] 1x ??1
PRINTcipher−1 [43] 2x ?1?
PRINTcipher−1 [43] 4x 1??
SEA [71] 1x ??1
SEA [71] 3x ?1?
SEA [71] 4x 1??
SEA−1 [71] 2x ?1?
SEA−1 [71] 3x ??1
SEA−1 [71] 4x 1??

Table 2.2: Undisturbed Bits of 5× 5 S-boxes

S-box Input Output
FIDES [13] 08x ????1
FIDES [13] 0Bx ??1??
FIDES [13] 10x ?1???
FIDES [13] 16x 1????
FIDES [13] 1Ax ???1?

Undisturbed bits can be used to construct better truncated, impossible or improbable
differentials and they should be avoided by S-box designers to provide more security
against these kind of attacks. In order to support our claim, in this section we are going
to obtain the longest impossible differentials for PRESENT and SERPENT ciphers using
undisturbed bits. Undisturbed bits of the S-boxes of these ciphers are given in Table
2.7.

By using the undisturbed bits of PRESENT’s S-box, we obtained a 6-round impossible
differential as shown in Table 2.5 where a ? denotes an indeterminate value and x’s in
a row means that at least one of them is non-zero. Without using the undisturbed bits,
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Table 2.3: Undisturbed Bits of 6× 6 S-boxes

S-box Input Output
FIDES [13] 25x ?1????
FIDES [13] 30x ???1??
FIDES −1 [13] 2Ax ????1?

Table 2.4: Undisturbed Bits of 9× 9 S-boxes

S-box Input Output
KASUMI [1] 8x ????????1
KASUMI [1] 40x ???????1?
KASUMI [1] 2x ??????1??
KASUMI [1] 20x ?????1???
KASUMI [1] 10x ????1????
KASUMI [1] 4x ???1?????
KASUMI [1] 1x ??1??????
KASUMI [1] 100x ?1???????
KASUMI [1] 80x 1????????
MISTY [53] 1ffx ????????1
MISTY [53] 80x ???????1?
MISTY [53] 100x ??????1??
MISTY [53] 1x ?????1???
MISTY [53] 2x ????1????
MISTY [53] 4x ???1?????
MISTY [53] 8x ??1??????
MISTY [53] 20x ?1???????
MISTY [53] 10x 1????????

the longest impossible differential we could find for PRESENT had a length of 5-rounds
with difference of the 60 out of 64 bits are fixed which means p = 2−60. However, by
using the 6 undisturbed bits of PRESENT, we can construct 5 and 6-round impossible
differentials with only 13 and 39 bits fixed, respectively. In the Chapter 5, by further
using the undisturbed bits, we construct a 5-round differential with probability 2−17.84

that can be combined with the 5-round impossible differential. Hence, by using the
expansion method of Section 4.2, we construct a 10-round improbable differential and
provide improbable differential attacks on PRESENT reduced to 12 and 13 rounds.

Without using undisturbed bits, the longest impossible differential we could find on
SERPENT had a length of 3.5 rounds. However, we obtained four 5.5-round impos-
sible differentials on SERPENT with the help of undisturbed bits and one of them is
shown in detail in Table 2.6. Here Si’s are the differences after the Si operations, LT
represents the differences after the linear transformation and question marks represent
indeterminate bit differences. The miss-in-the-middle is observed at the 13th bit of X3
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Table 2.5: A 6-Round Impossible Differential for PRESENT

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
X0,I 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 1001 0000 0000
X1,S 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 ???0 0000 0000
X1,P 0000 0000 0?00 0?00 0000 0000 0?00 0?00 0000 0000 0?00 0?00 0000 0000 0000 0000
X2,S 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000
X2,P 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000
X3,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000
X3,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0

X3,P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???x ???x ???x ???x
X4,S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 000x 000x 000x 000x
X4,P ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? xxxx
X5,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? ???1
X5,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???1
X6,S 0101 0101 0101 ???? 0101 0101 0101 ???? 0101 0101 0101 ???? 0101 0101 0101 0001
X6,P 000? 000? 000? 0000 111? 111? 111? 1110 000? 000? 000? 0000 111? 111? 111? 1111

after round 2. Note that 5.5-round impossible differentials we have found are infeasi-
ble to mount an attack since p = 2−128. Instead, by eliminating the last round of the
5.5-round impossible differential, we obtained a 4.5-round impossible differential with
p = 2−100 and used it to construct a 5.5-round improbable differential with probabil-
ity p′ = 2−4. We are going to use this improbable differential in Chapter 7 to attack
SERPENT reduced to 7 rounds.

Undisturbed bits are also used in [87] to obtain an 8-round impossible differential and
show that RECTANGLE cipher is secure against impossible differential cryptanalysis.
Moreover, in a different context, undisturbed bits are used in [72] to show that full
PRESENT is secure against related-key differential cryptanalysis.

Table 2.7: Undisturbed Bits of 4× 4 S-boxes

S-box Input Output
CLEFIA SS0−1 [68] Ax ?0??
CLEFIA SS0−1 [68] 3x,9x ?1??
DES1 Row1−1 [59] Ax ???1
DES1 Row1−1 [59] 2x ??1?
DES1 Row1−1 [59] 8x 1???
DES1 Row2−1 [59] 8x ???1
DES1 Row3−1 [59] 5x ???1
DES1 Row3−1 [59] 4x ??1?
DES1 Row3−1 [59] 1x 1???
DES1 Row4 [59] Fx ?0?0
DES1 Row4 [59] 4x,Bx ???1
DES1 Row4 [59] 2x,Dx ?1??
DES1 Row4−1 [59] 8x ???1
DES1 Row4−1 [59] 2x 1???
DES2 Row1 [59] 7x ?0??
DES2 Row1 [59] 8x ??1?

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

DES2 Row1 [59] 1x,6x ?1??
DES2 Row1−1 [59] Ax ???0
DES2 Row1−1 [59] 2x,8x ???1
DES2 Row2 [59] Ex ???0
DES2 Row2 [59] 6x,8x ???1
DES2 Row2 [59] 4x 1???
DES2 Row2−1 [59] 7x ???0
DES2 Row2−1 [59] Fx ??0?
DES2 Row2−1 [59] 1x,6x ???1
DES2 Row2−1 [59] 7x,8x ??1?
DES2 Row3 [59] 5x 0???
DES2 Row3 [59] 6x ?1?1
DES2 Row3 [59] 1x,4x 1???
DES2 Row3−1 [59] Ax 0???
DES2 Row3−1 [59] 2x,8x 1???
DES2 Row4−1 [59] 2x ???1
DES2 Row4−1 [59] 1x ??1?
DES2 Row4−1 [59] 8x ?1??
DES2 Row4−1 [59] 4x 1???
DES3 Row1 [59] Ex ???0
DES3 Row1 [59] 6x,8x ???1
DES3 Row1 [59] 7x 1???
DES3 Row1−1 [59] 2x 1???
DES3 Row2 [59] Ex ???0
DES3 Row2 [59] 6x,8x ???1
DES3 Row2 [59] 4x ??1?
DES3 Row2−1 [59] Fx ??0?
DES3 Row2−1 [59] 2x,Dx ??1?
DES3 Row2−1 [59] 8x 1???
DES3 Row3 [59] Ex ?0??
DES3 Row3 [59] 6x,8x ?1??
DES3 Row3 [59] 2x 1???
DES3 Row3−1 [59] 6x ???0
DES3 Row3−1 [59] 2x,4x ???1
DES3 Row4 [59] 3x 0??1
DES3 Row4 [59] 1x,2x 1???
DES3 Row4−1 [59] Ex ?0??
DES3 Row4−1 [59] 1x ???1
DES3 Row4−1 [59] 6x,8x ?1??
DES4 Row1−1 [59] 8x ??1?
DES4 Row1−1 [59] 2x 1???
DES4 Row2−1 [59] 4x ??1?
DES4 Row2−1 [59] 1x 1???

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

DES4 Row3−1 [59] 2x ??1?
DES4 Row3−1 [59] 8x 1???
DES4 Row4−1 [59] 1x ??1?
DES4 Row4−1 [59] 4x 1???
DES5 Row1 [59] 5x ?0??
DES5 Row1 [59] 1x,4x ?1??
DES5 Row1 [59] Cx 1???
DES5 Row1−1 [59] 2x ???1
DES5 Row1−1 [59] 3x ??1?
DES5 Row2−1 [59] 4x 1??1
DES5 Row3−1 [59] 6x ??1?
DES5 Row3−1 [59] 4x 1???
DES5 Row4 [59] 2x ??1?
DES5 Row4 [59] Fx 1???
DES5 Row4−1 [59] 8x 1???
DES6 Row1−1 [59] 1x ???1
DES6 Row2−1 [59] 8x ???1
DES6 Row2−1 [59] 2x ??1?
DES6 Row2−1 [59] 4x 1???
DES6 Row3 [59] 2x ??1?
DES6 Row3 [59] 6x ?1??
DES6 Row3−1 [59] 1x ???1
DES6 Row3−1 [59] 8x 1???
DES6 Row4 [59] Ex ???0
DES6 Row4 [59] 6x,8x ???1
DES6 Row4 [59] 1x ?1??
DES6 Row4−1 [59] 6x 0???
DES6 Row4−1 [59] 2x,4x 1???
DES7 Row1 [59] 7x ?0??
DES7 Row1 [59] 4x ??1?
DES7 Row1 [59] 1x,6x ?1??
DES7 Row1−1 [59] Dx ??0?
DES7 Row1−1 [59] 8x ???1
DES7 Row1−1 [59] 2x,Dx ??1?
DES7 Row2 [59] 5x 0???
DES7 Row2 [59] 9x ??1?
DES7 Row2 [59] 1x,4x 1???
DES7 Row2−1 [59] Dx ??0?
DES7 Row2−1 [59] 2x ???1
DES7 Row2−1 [59] 5x,8x ??1?
DES7 Row3−1 [59] 4x ???1
DES7 Row3−1 [59] 8x ?1??
DES7 Row4 [59] 4x ??11

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

DES7 Row4 [59] 1x ?1??
DES7 Row4 [59] 6x 1???
DES7 Row4−1 [59] Cx 0???
DES7 Row4−1 [59] 4x,8x 1???
DES8 Row1 [59] Ex ??0?
DES8 Row1 [59] 4x ???1
DES8 Row1 [59] 6x,8x ??1?
DES8 Row1−1 [59] Fx ??0?
DES8 Row1−1 [59] 9x 0???
DES8 Row1−1 [59] 1x 1?1?
DES8 Row1−1 [59] Ex ??1?
DES8 Row1−1 [59] 8x 1???
DES8 Row2 [59] 4x 1???
DES8 Row2−1 [59] Fx ?10?
DES8 Row2−1 [59] 2x ???1
DES8 Row2−1 [59] 7x,8x ??1?
DES8 Row2−1 [59] 1x 1???
DES8 Row3 [59] 2x ??1?
DES8 Row3 [59] 1x ?1??
DES8 Row3−1 [59] 5x 0???
DES8 Row3−1 [59] 8x ?1??
DES8 Row3−1 [59] 1x,4x 1???
DES8 Row4 [59] Ax ?0??
DES8 Row4 [59] 2x,8x ?1??
DES8 Row4−1 [59] Ex ?0??
DES8 Row4−1 [59] 3x ???1
DES8 Row4−1 [59] 4x,Ax ?1??
DES8 Row4−1 [59] 1x 1???
GOST S4 [82] 8x 1???
GOST S4 [82] 9x ??1?
GOST S4−1 [82] 1x ??1?
GOST S5−1 [82] Dx ??1?
GOST S6 [82] 2x ??1?
GOST S7 [82] 9x ???1
GOST S7−1 [82] 2x,8x ?1??
GOST S7−1 [82] 3x 1???
GOST S7−1 [82] Ax ?0??
GOST S8−1 [82] 5x ?1??
HB1 S1−1 [36] 1x,Ex ???1
HB1 S1−1 [36] Fx ???0
HB2 S3 [37] 2x,Dx 1???
HB2 S3 [37] Fx 0???
HB2 S4−1 [37] 1x,Ex ???1

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

HB2 S4−1 [37] Fx ???0
LUCIFER S0−1 [70] 3x ???1
LUFFA−1 [24] 1x,3x ???1
LUFFA−1 [24] 2x ???0
NOEKEON [31] 1x 11??
NOEKEON [31] 8x 0???
NOEKEON [31] 9x 1???
NOEKEON [31] Ax ?1??
NOEKEON [31] Bx ?0??
NOEKEON−1 [31] 1x 11??
NOEKEON−1 [31] 8x 0???
NOEKEON−1 [31] 9x 1???
NOEKEON−1 [31] Ax ?1??
NOEKEON−1 [31] Bx ?0??
LBLOCK S0,S8 [85] 1x, 2x ???1
LBLOCK S0,S8 [85] 3x ??10
LBLOCK S0,S8 [85] 8x ??1?
LBLOCK S0,S8 [85] Bx ??0?
LBLOCK S0−1,S8−1 [85] 1x ?0??
LBLOCK S0−1,S8−1 [85] 4x 01??
LBLOCK S0−1,S8−1 [85] 5x ?1??
LBLOCK S0−1,S8−1 [85] 8x, Cx 1???
LBLOCK S1,S9 [85] 1x, 2x ??1?
LBLOCK S1,S9 [85] 3x ??01
LBLOCK S1,S9 [85] 8x ???1
LBLOCK S1,S9 [85] Bx ???0
LBLOCK S1−1,S9−1 [85] 2x ?0??
LBLOCK S1−1,S9−1 [85] 4x 01??
LBLOCK S1−1,S9−1 [85] 6x ?1??
LBLOCK S1−1,S9−1 [85] 8x, Cx 1???
LBLOCK S2 [85] 1x, 2x ??1?
LBLOCK S2 [85] 3x 1?0?
LBLOCK S2 [85] 8x 1???
LBLOCK S2 [85] Bx 0???
LBLOCK S2−1 [85] 1x 01??
LBLOCK S2−1 [85] 2x ?0??
LBLOCK S2−1 [85] 3x ?1??
LBLOCK S2−1 [85] 4x, 5x 1???
LBLOCK S3 [85] 1x, 2x ???1
LBLOCK S3 [85] 3x ?1?0
LBLOCK S3 [85] 8x ?1??
LBLOCK S3 [85] Bx ?0??
LBLOCK S3−1 [85] 1x ?0??

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

LBLOCK S3−1 [85] 2x, Ax 1???
LBLOCK S3−1 [85] 8x 01??
LBLOCK S3−1 [85] 9x ?1??
LBLOCK S4 [85] 1x, 2x ???1
LBLOCK S4 [85] 3x 1??0
LBLOCK S4 [85] 8x 1???
LBLOCK S4 [85] Bx 0???
LBLOCK S4−1 [85] 1x ?0??
LBLOCK S4−1 [85] 2x 01??
LBLOCK S4−1 [85] 3x ?1??
LBLOCK S4−1 [85] 4x, 6x 1???
LBLOCK S5 [85] 1x, 2x ???1
LBLOCK S5 [85] 3x ?1?0
LBLOCK S5 [85] 8x ?1??
LBLOCK S5 [85] Bx ?0??
LBLOCK S5−1 [85] 1x ?0??
LBLOCK S5−1 [85] 2x 01??
LBLOCK S5−1 [85] 3x ?1??
LBLOCK S5−1 [85] 8x, Cx 1???
LBLOCK S6 [85] 1x, 2x ??1?
LBLOCK S6 [85] 3x ??01
LBLOCK S6 [85] 8x ???1
LBLOCK S6 [85] Bx ???0
LBLOCK S6−1 [85] 2x ?0??
LBLOCK S6−1 [85] 4x 01??
LBLOCK S6−1 [85] 6x ?1??
LBLOCK S6−1 [85] 8x, Cx 1???
LBLOCK S7 [85] 1x, 2x ??1?
LBLOCK S7 [85] 3x ??01
LBLOCK S7 [85] 8x ???1
LBLOCK S7 [85] Bx ???0
LBLOCK S7−1 [85] 2x ?0??
LBLOCK S7−1 [85] 4x 01??
LBLOCK S7−1 [85] 6x ?1??
LBLOCK S7−1 [85] 8x, Cx 1???
Piccolo [67] 1x 10??
Piccolo [67] 2x 0???
Piccolo [67] 3x 1???
Piccolo [67] 8x, 9x ?1??
Piccolo−1 [67] 1x,3x ??1?
Piccolo−1 [67] 2x ?10?
Piccolo−1 [67] 5x ?0??
Piccolo−1 [67] 7x ?1??

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

PRESENT [23] 9x ???0
PRESENT [23] 1x, 8x ???1
PRESENT−1 [23] 5x ???0
PRESENT−1 [23] 1x, 4x ???1
RECTANGLE [87] 2x ?11?
RECTANGLE [87] 4x ?1??
RECTANGLE [87] 6x ?0??
RECTANGLE [87] Cx ??1?
RECTANGLE [87] Ex ??0?
RECTANGLE−1 [87] 1x ??1?
RECTANGLE−1 [87] 4x ??11
RECTANGLE−1 [87] 5x ??0?
RECTANGLE−1 [87] 8x ???1
RECTANGLE−1 [87] Cx ???0
SERPENT S0 [3] 2x, 4x 1???
SERPENT S0 [3] 6x 0???
SERPENT S0−1 [3] 4x, 8x ?1??
SERPENT S0−1 [3] Cx ?0??
SERPENT S1 [3] 4x, 8x ?1??
SERPENT S1 [3] Cx ?0??
SERPENT S1−1 [3] 1x, 4x 1???
SERPENT S1−1 [3] 5x 0???
SERPENT S2 [3] 2x, 8x ???1
SERPENT S2 [3] Ax ???0
SERPENT S2−1 [3] 1x, Cx ???1
SERPENT S2−1 [3] Dx ???0
SERPENT S4, S5 [3] 4x, Bx ???1
SERPENT S4, S5 [3] Fx ???0
SERPENT S6 [3] 2x, 4x ??1?
SERPENT S6 [3] 6x ??0?
SERPENT S6−1 [3] 2x, 8x ??1?
SERPENT S6−1 [3] Ax ??0?
SPONGENT [22] 1x ???1
SPONGENT [22] 8x ???1
SPONGENT [22] 9x ???0
SPONGENT−1 [22] 7x 1???
SPONGENT−1 [22] 8x 1???
SPONGENT−1 [22] Fx 0???
Twofish q0 t0 [65] 4x ?1??
Twofish q0 t3−1 [65] 1x,5x ?1??
Twofish q0 t3−1 [65] 4x ?0??
Twofish q1 t0 [65] 4x ???1
Twofish q1 t1−1 [65] 2x ?1??

Continued on next page
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Table 2.7 – continued from previous page
S-box Input Output

Twofish q1 t3 [65] 7x ?1??
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Table 2.6: A 5.5-Round Impossible Differential for SERPENT

Input X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0001 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0010 0000 0000 0000 0000 0000 0000
X3: 0001 0000 0000 0000 0000 0000 0000 0000

LT X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0100 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S1 X0: 0000 0000 0000 0?00 0000 0000 0000 0000
X1: 0000 0000 0000 0?00 0000 0000 0000 0000
X2: 0000 0000 0000 0100 0000 0000 0000 0000
X3: 0000 0000 0000 0?00 0000 0000 0000 0000

LT X0: 0?00 100? 0000 0000 0000 0000 00?? 0010
X1: 0000 0000 0100 ?000 0000 0000 0000 000?
X2: 00?0 0000 0000 110? ?000 1000 0000 0000
X3: 0001 00?0 0000 0000 0000 0000 0000 0000

S2 X0: 0??1 ?0?? 0100 ??0? ?000 ?000 00?? 00??
X1: 0??? ?0?? 0?00 ??0? ?000 ?000 00?? 00??
X2: 0??? ?0?? 0?00 ??0? ?000 ?000 00?? 00??
X3: 0??? ?0?? 0?00 ??0? ?000 ?000 00?? 00??

LT X0: ???? ???? ???? ???? ???? ???? ???? ????
X1: ???? 0??0 ??0? ???? ??0? ?1?? ???? 0???
X2: ???? ???? ???? ???? ???? ???? 1??? ????
X3: ?0?? ???? ???? 1?0? ??1? ??0? ???? ??0?

IMPOSSIBLE
LT X0: ???? ???? ???? ???? ??0? ???? ???? ????

X1: ???? ???? ???? ???? ??0? ???? ???? ????
X2: ???? ???? ???? ???? ??0? ???? ???? ????
X3: ???? ???? ???? ???? ??0? ???? ???? ????

S3 X0: ?000 ??0? 0?00 ?0?? ??0? ???0 ?0?? 0000
X1: 0??? ???? ??0? ???? ?00? ?00? ???? ?0??
X2: 0?00 ???? 0??? ?00? ??0? 00?0 00?? ??0?
X3: ???? ???? ???? ???? ?00? ??0? ???0 ?0?0

LT X0: 0??? ?0?0 ?000 00?0 000? 000? 00?0 0000
X1: 0??? ?0?0 ?000 00?0 000? 000? 00?0 0000
X2: 0??? ?0?0 ?000 00?0 000? 000? 00?0 0000
X3: 0??? ?0?0 ?000 00?0 000? 000? 00?0 0000

S4 X0: 0000 0000 0000 00?0 000? 0000 0000 0000
X1: 0??0 00?0 0000 0000 0000 000? 0000 0000
X2: 0000 ?000 0000 0000 0000 0000 00?0 0000
X3: 0?0? 0000 ?000 0000 0000 000? 0000 0000

LT X0: 0?00 0000 0000 0000 0000 0000 0000 0000
X1: 0?00 0000 0000 0000 0000 0000 0000 0000
X2: 0?00 0000 0000 0000 0000 0000 0000 0000
X3: 0?00 0000 0000 0000 0000 0000 0000 0000

S5 X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0100 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

LT X0: 0000 0000 0000 0000 0000 0000 0001 0000
X1: 1000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000
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CHAPTER 3

DIFFERENTIAL FACTORS

We introduce differential factors in this chapter. Differential factors are key differences
for ciphers with key XOR before the S-box where the output difference of the S-box is
invariant. An attacker cannot capture the whole key when there is a differential factor
but this also reduces the work of the attacker.

3.1 Differential Factors

A differential variant attack on an SPN cipher tries to capture the round keys corre-
sponding to the S-boxes activated by the differential. However, output difference of
the the S-box operation may be invariant when the round key is XORed with some
specific value. Such a case would prevent the attacker from fully capturing the round
key. This observation is similar to the linear factors of block ciphers but here we
are focusing on the S-box instead of some rounds of the cipher and we focus on key
differences instead of invariant key bits.

Definition 3.1 ([25]). A block cipher is said to have a linear factor if, for all plaintexts
and keys, there is a fixed non-empty set of key bits whose simultaneous complementa-
tion leaves the XOR sum of a fixed non-empty set of ciphertext bits unchanged.

In order to have a similar property for S-boxes in the concept of differential cryptanal-
ysis, we define the differential factors as follows:

Definition 3.2. Let S be a function from Fn2 to Fm2 . For all x, y ∈ Fn2 that satisfy
S(x)⊕S(y) = µ, if we also have S(x⊕λ)⊕S(y⊕λ) = µ, then we say that the S-box
has a differential factor λ for the output difference µ. (i.e. µ remains invariant for λ).

When we introduced undisturbed bits in Chapter 2, we considered the undisturbed bits
of the S-boxes together with the undisturbed bits of the inverse of the S-boxes because
in SPNs, the inverse of the S-box is used for decryption. In the following theorem, we
prove that the number of differential factors of an S-box is the same with the number
of differential factors of its inverse. Moreover, it also provides the differential factors
of the inverse S-box when we know the differential factors of the S-box. Hence, there
is no need to check the differential factors of the inverse S-boxes.
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Theorem 3.1. If a bijective S-box S has a differential factor λ for an output difference
µ, then S−1 has a differential factor µ for the output difference λ.

Proof. Let us assume that S has a differential factor λ for an output difference µ. If
S−1(c1)⊕ S−1(c2) = λ for some c1 and c2, then we need to show that S−1(c1 ⊕ µ)⊕
S−1(c2 ⊕ µ) = λ.

Let c1 ⊕ µ = S(p1) for some p1, then we have S(S−1(c1)⊕ λ)⊕ S(p1 ⊕ λ) = µ since
λ is a differential factor of S for µ. Thus, we have

S−1(c1 ⊕ µ)⊕ S−1(c2 ⊕ µ) = S−1(S(p1))⊕ S−1(S(S−1(c1)⊕ λ)⊕ µ)
= p1 ⊕ S−1(S(p1 ⊕ λ))
= p1 ⊕ p1 ⊕ λ
= λ

Theorem 3.2. If λ1 and λ2 are differential factors for an output difference µ, then
λ1⊕λ2 is also differential factor for the output difference µ. i.e. All differential factors
λi for µ forms a vector space.

Proof. We are going to use the following change of variables: x′ = x⊕λ1 and y′ = y⊕
λ1. For all (x, y) pairs satisfying S(x)⊕S(y) = µ, we have S(x⊕λ1)⊕S(y⊕λ1) = µ
and S(x⊕ λ2)⊕ S(y ⊕ λ2) = µ. Thus, we have

S(x⊕ λ1 ⊕ λ2)⊕ S(y ⊕ λ1 ⊕ λ2) = S(x′ ⊕ λ2)⊕ S(y′ ⊕ λ2) = µ

3.1.1 Differential Factors and Cryptanalysis

We start by recalling the definition of advantage.

Definition 3.3 ([66]). If an attack on an m-bit key gets the correct value ranked among
the top r out of 2m possible candidates, we say the attack obtained an (m− log(r))-bit
advantage over exhaustive search.

Theorem 3.3. In a block cipher let an S-box S contains a differential factor λ for an
output difference µ and the partial round key k is XORed with the input of S. If an input
pair provides the output difference µ under a partial subkey k, then the same output
difference is observed under the partial subkey k ⊕ λ. Therefore, during a differential
attack involving the guess of a partial subkey corresponding to the output difference
µ, the advantage of the cryptanalyst is reduced by 1 bit and the time complexity of this
key guess step is halved.
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Proof. In a differential attack for any key k, k and k ⊕ λ would get the same number
of hits since λ is a differential factor. Hence the attacker cannot distinguish half of the
guessed keys with the other half. Therefore during the key guessing step, the attacker
does not need to guess half of the keys. Thus, the time complexity of this step is
halved.

Corollary 3.4. During a differential attack involving the guess of a partial subkey cor-
responding to the output difference µ of an S-box that has a vector space of differential
factors of dimension r for µ, then advantage of the cryptanalyst is reduced by r bits
and the time complexity of the key guess step is reduced by a factor of 2r.

Proof. Follows directly from Theorem 3.2 and Theorem 3.3.

Table 3.1: Differential Factors of SERPENT’s S-boxes

Differential Output
S-box Factor Difference
S0 4x 4x
S0 Dx Fx
S1 4x 4x
S1 Fx Ex
S2 2x 1x
S2 4x Dx

S6 6x 2x
S6 Fx Fx

Biham et al.’s differential-linear attacks [11, 35] on SERPENT are good examples for
the importance of differential factors. Because since differential factors were not pub-
licly known before 2014, in these attacks the differential factors are overlooked. Thus,
the time complexity and the number of captured subkey bits of these attacks are actu-
ally less than it is reported in [11, 35]. The differential-linear attacks of [11, 35] start
at round 1 and the 3-round differential activates 5 S-boxes S1 in this round. Two of
the output differences of these activated S-boxes is 4x and Ex and there are differential
factors for these differences as shown in Table 3.1. The authors guess every possible 20
subkey bits corresponding to these S-boxes but by Theorem 3.3, the attacker can have
only 18-bit advantage and there is no need to try half of the subkey bits corresponding
to these two differential factors. Thus, the advantage of the differential-linear attacks
on 10, 11, and 12 rounds of SERPENT are actually 38, 46, and 158 bits instead of 40,
48, and 160 bits, respectively. And again by Theorem 3.3, the same attacks can be
performed with time complexities reduced by a factor of 4.

Moreover, the 12-round attack of [35] adds one more round to the top of the differential
which affects every S-box at round 0 except the S-boxes 2, 3, 19, and 23 and guesses
the 112 bits of the subkey corresponding to these affected S-boxes. However, by using
the undisturbed bits of SERPENT, we observed that the output difference of the S-box
9 is exactly 4x. Since 4x has also a differential factor for S0, the attacker’s advantage
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Table 3.2: Differential Factors of 8× 8 S-boxes

S-box λ µ
CRYPTON S0, S1 [48] 10x 10x
CRYPTON S0, S1 [48] 20x 20x
CRYPTON S0, S1 [48] 30x 30x
CRYPTON S0, S1 [48] 40x 40x
CRYPTON S0, S1 [48] 50x 50x
CRYPTON S0, S1 [48] 60x 60x
CRYPTON S0, S1 [48] 70x 70x
CRYPTON S0, S1 [48] 80x 80x
CRYPTON S0, S1 [48] 90x 90x
CRYPTON S0, S1 [48] A0x A0x
CRYPTON S0, S1 [48] B0x B0x
CRYPTON S0, S1 [48] C0x C0x
CRYPTON S0, S1 [48] D0x D0x
CRYPTON S0, S1 [48] E0x E0x
CRYPTON S0, S1 [48] F0x F0x

reduces to 158 bits and the time complexity of the attack further reduced by a factor
of 2.

We are going to provide these observations on SERPENT’s differential factors in more
detail in Chapter 7 where we improve the attacks of [11, 35].

The only 8×8 S-boxes we could find with differential factors are the two S-boxes of the
initial version of the CRYPTON cipher [48]. They contain 15 differential factors each
and they are provided in Table 3.2. These S-boxes are replaced in the revised version of
the CRYPTON cipher [49] and the new S-boxes do not contain any differential factors.

Table 3.3: Differential Factors of 4× 4 S-boxes

S-box λ µ
DES1 Row3 [59] Fx 2x
DES1 Row3 [59] Fx 8x
DES1 Row3 [59] Fx Ax
DES2 Row1 [59] 6x Ax
DES2 Row2 [59] 2x 7x
DES2 Row2 [59] 4x 7x
DES2 Row2 [59] 6x 7x
DES2 Row3 [59] 1x Ax
DES2 Row3 [59] 6x Ax
DES2 Row3 [59] 7x Ax
DES3 Row3 [59] 2x 6x

Continued on next page
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Table 3.3 – continued from previous page
S-box λ µ

DES3 Row3 [59] 8x 6x
DES3 Row3 [59] Ax 6x
DES3 Row4 [59] 3x 1x
DES3 Row4 [59] 3x 6x
DES3 Row4 [59] 3x 7x
DES3 Row4 [59] 3x 8x
DES3 Row4 [59] 3x 9x
DES3 Row4 [59] 1x Ex
DES3 Row4 [59] 2x Ex
DES3 Row4 [59] 3x Ex
DES3 Row4 [59] 3x Fx
DES5 Row4 [59] 2x Fx
DES6 Row1 [59] 9x Dx

DES6 Row2 [59] Bx 4x
DES6 Row4 [59] 6x 6x
DES7 Row2 [59] 4x Dx

DES7 Row2 [59] 9x Dx

DES7 Row2 [59] Dx Dx

DES7 Row4 [59] 4x 3x
DES7 Row4 [59] 1x Cx
DES7 Row4 [59] 4x Cx
DES7 Row4 [59] 5x Cx
DES7 Row4 [59] 4x Fx
DES8 Row2 [59] 6x 7x
DES8 Row2 [59] Bx 8x
GOST S1 [82] 5x 3x
GOST S4 [82] Dx 5x
GOST S6 [82] 9x Bx

GOST S8 [82] 7x 5x
GOST S8 [82] Ex 6x
LBLOCK S0, S8 [85] Bx 1x
LBLOCK S0, S8 [85] 3x 4x
LBLOCK S1, S6, S7, S9 [85] Bx 2x
LBLOCK S1, S6, S7, S9 [85] 3x 4x
LBLOCK S2 [85] 3x 1x
LBLOCK S2 [85] Bx 2x
LBLOCK S3 [85] Bx 1x
LBLOCK S3 [85] 3x 8x
LBLOCK S4, S5 [85] Bx 1x
LBLOCK S4, S5 [85] 3x 2x
LUFFA [24] 4x 1x
LUFFA [24] 2x 2x
NOEKEON [31] 1x 1x

Continued on next page
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Table 3.3 – continued from previous page
S-box λ µ

NOEKEON [31] Bx Bx

PRESENT [23] 1x 5x
PRESENT [23] Fx Fx
Piccolo [67] 1x 2x
Piccolo [67] 2x 5x
RECTANGLE [87] 2x 4x
RECTANGLE [87] Ex Cx
SARMAL S2 [83] Fx 4x
SARMAL S2 [83] Ax 9x
SERPENT S0 [3] 4x 4x
SERPENT S0 [3] Dx Fx
SERPENT S1 [3] 4x 4x
SERPENT S1 [3] Fx Ex
SERPENT S2 [3] 2x 1x
SERPENT S2 [3] 4x Dx

SERPENT S6 [3] 6x 2x
SERPENT S6 [3] Fx Fx
SPONGENT [22] Fx 9x
SPONGENT [22] 1x Fx
Twofish q0 t1 [65] 6x 9x
Twofish q1 t2 [65] 5x Bx

3.1.2 Relating Differential Factors to Other Properties of S-boxes

Since we are considering non-zero µ and λ, a 3×3 S-box can contain at most 7 ·7 = 49
differential factors. In such a case, an S-box provides no security at all. In Chapter 2,
we showed that every bijective 3 × 3 S-box contains an undisturbed bit (actually at
least 6 undisturbed bits). However, this is not the case for differential factors. Among
the 8! = 40320 different bijective 3 × 3 S-boxes, we observed that 10752 of them do
not contain any differential factor. Moreover, 18816 of them contain 9, 9408 of them
contain 25, and 1344 of them contain 49 differential factors.

We further observed that the 3× 3 S-boxes that do not have any differential factor also
have 6 undisturbed bits, which is the smallest number of undisturbed bits a 3×3 S-box
can have. Thus, for the case of 3× 3 S-boxes, it is enough to check differential factors.
Thus, in general, it looks like it is harder to get differential factors than undisturbed
bits.

In our literature search we found 102 unique 4 × 4 S-boxes that are used in block
ciphers and hash functions and observed that 40 of them have 74 differential factors in
total, without counting the differential factors of their inverses. These are the S-boxes
of DES [59], GOST [82], LBLOCK [85], LUFFA [24], NOEKEON [31], Piccolo [67],
PRESENT [23], RECTANGLE [87], SARMAL [83], SERPENT [3], SPONGENT [22]
and Twofish [65] and they are provided in Table 3.3. During this analysis, we observed
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that the existence of differential factors for an S-box is closely related to the number
of nonzero entries in the columns of the DDT table. For instance, for a 4 × 4 S-box
the maximum value in the DDT table, which is called differential uniformity, cannot be
made less than 4 and since we prefer these kind of S-boxes for cryptographic purposes,
we observed the following phenomenon:

Conjecture 3.1. For a 4 × 4 S-box S with a differential uniformity of 4, S has a dif-
ferential factor for the output difference µ if and only if the µ-th column of the DDT
table of S consists of only zeros and fours.

3.2 Equivalent Definitions with only One Variable

When defining differential factors in Section 3.1, we used two variables x and y since
they are directly linked to the input pairs in differential cryptanalysis. One can observe
that the same definition and theorems of Section 3.1 for bijective S-boxes can be given
by using a single variable. We provide them as follows.

Definition 3.4. S has a differential factor λ for the output difference µ if

S−1(S(x)⊕ µ)⊕ λ = S−1(S(x⊕ λ)⊕ µ)

for all x.

Proposition 3.5. Definition 3.2 is equivalent to Definition 3.4.

Proof. Since S(x) ⊕ S(y) = µ, we have y = S−1(S(x) ⊕ µ). Similarly, y ⊕ λ =
S−1(S(x ⊕ λ) ⊕ µ) since S(x ⊕ λ) ⊕ S(y ⊕ λ) = µ. XORing both equations gives
λ = S−1(S(x)⊕ µ)⊕ S−1(S(x⊕ λ)⊕ µ) and we are done.

Definition 3.5. S has a differential factor λ for the output difference µ if

S(S−1(x)⊕ λ)⊕ µ = S(S−1(x⊕ µ)⊕ λ)

for all x.

Proposition 3.6. Definition 3.2 is equivalent to Definition 3.5.

Proof. Let y = S(x). Then the Definition 3.4 becomes

S−1(y ⊕ µ)⊕ λ = S−1(S(S−1(y)⊕ λ)⊕ µ)

for all y. Applying the S operation on both sides of the equation gives

S(S−1(y ⊕ µ)⊕ λ) = S(S−1(y)⊕ λ)⊕ µ

for all y and we are done.

Thus, Propositions 3.5 and 3.6 prove the Theorem 3.1.
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Proposition 3.7. If λ1 and λ2 are differential factors for an output difference µ, then
λ1⊕λ2 is also differential factor for the output difference µ. i.e. All differential factors
λi for µ forms a vector space.

Proof. We have

S−1(S(x)⊕ µ)⊕ λ1 = S−1(S(x⊕ λ1)⊕ µ)

for all x, by Definition 3.4. And we have

S−1(S(x⊕ λ1)⊕ µ)⊕ λ2 = S−1(S(x⊕ λ1 + λ2)⊕ µ)

since λ2 is a differential factor. Thus, we get

S−1(S(x)⊕ µ)⊕ λ2 ⊕ λ2 = S−1(S(x⊕ λ1 ⊕ λ2)⊕ µ)

for all x and we are done.
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CHAPTER 4

IMPROBABLE DIFFERENTIAL CRYPTANALYSIS

We introduce improbable differential cryptanalysis in this chapter. It is a differential
cryptanalysis technique that bridges the gap between (truncated) differential crypt-
analysis and impossible differential cryptanalysis. We first came up with the idea of
improbable differential cryptanalysis in 2008 but we first published it in 2010 in [74].
We published parts of this chapter in [74, 76, 78].

4.1 Introduction

Improbable differential attack is a statistical differential attack in which a given differ-
ential of a cipher is less probable than a random permutation. Hence, we aim to find
a differential with α input difference and β output difference so that these differences
are observed with probability p0 for the cipher and with probability p for a random
permutation where p0 < p. An improbable differential is defined as a differential that
does not have the output difference β with a probability p′, when the input difference is
α. Thus, p′ denotes the total probability of differentials having α input difference with
an output difference other than β. Hence for the cipher, probability of observing the α
and β differences (i.e. satisfying the improbable differential) becomes p0 = p ·(1−p′).
Note that p0 may be larger than p · (1− p′) if there are differentials having α input dif-
ference and β output difference. Hence the attacker should check the existence of such
differentials.

Note that the impossible differential attacks can be seen as a special case of improbable
differential attacks where the probability p′ is taken as 1.

An improbable differential can be obtained by using a miss-in-the-middle [6] like tech-
nique which we call the almost miss in the middle technique. Let α difference becomes
δ with probability p1 after r1 rounds of encryption and β difference becomes γ after r2
rounds of decryption as shown in Fig. 4.1. With the assumption that these two events
are independent, if δ is different than γ, then α difference does not become β with
probability p′ = p1 · p2 after r1 + r2 rounds of encryption. Note that p1 and p2 equal to
1 in the miss-in-the-middle technique. Furthermore, we define an expansion method
for constructing an improbable differential from an impossible differential in Section
4.2.
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Figure 4.1: Almost miss in the middle technique

4.2 Expansion Technique: Improbable Differentials from Impossible Differen-
tials

An improbable differential can be obtained by combining a differential (or two) with
an impossible differential in order to obtain improbable differentials covering more
rounds. Let δ 9 γ be an impossible differential and α → δ and γ ← β be two dif-
ferentials with probabilities p1 and p2, respectively. Then we can construct improbable
differentials α 9 γ, δ 9 β and α 9 β with probabilities p′ equal to p1, p2 and p1 · p2
as shown in Fig. 4.2.

δ

γ
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δ

γ

α
p1

p’=p1

δ
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p’=p2

δ

γ

α

β

p1

p2
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Impossible Di�erential Expanded Improbable Di�erentials

Figure 4.2: Expansion of an impossible differential to improbable differentials

This expansion method can be used to construct improbable differentials to distinguish
more rounds of the cipher from a random permutation; or an impossible differential
attack can be turned into an improbable differential attack on more rounds of the ci-
pher when suitable differentials α → δ or γ ← β exist. However, such a conversion
might require more data to obtain the correct key and hence result in higher data and
time complexity. If the size of the guessed key decreases in the converted improbable
differential attack, so does the memory complexity. The guessed subkeys can be rep-
resented by one bit of an array in impossible differential attacks. However, we need to
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keep counters for the subkeys in improbable differential attacks and hence the memory
complexity is higher when the same number of subkeys are guessed.

4.3 On the Expansion Technique

In the proposal of the improbable differential cryptanalysis [74], we cautioned that the
equation p0 = (1 − p′)p for an improbable differential may not be accurate if there
are high-probability truncated differentials with the same input and output differences,
and that the actual probabilities should be checked. However, it may not always be
possible to computationally perform such a verification. Recently, Blondeau [17] has
questioned the validity of the previous improbable differential attacks on PRESENT
and CLEFIA [77, 74].

For instance in [77], we provide two improbable differentials ∆1 and ∆2 for PRESENT
where ? stands for any non-zero difference

∆5 : 0000000000001001x →9r 555?555?555?5551x, p = 2−48

∆6 : 0000000000001001x →10r???0???0???0???1x, p = 2−16

Due to experimental results, we claimed that ∆5 is not an improbable differential due to
the existence of high-probability truncated differentials but ∆6 is a correct improbable
differential, and we performed the attack using ∆6. In [17], by experimentally observ-
ing that the probability of the first 8 rounds of ∆5 is pE = 2−12.97 while p = 2−13,
Blondeau shows that an improbable differential attack using ∆5 cannot succeed and
concludes that it may be impossible to obtain improbable differentials for SPN ciphers
using the expansion technique due to the failure of ∆5. However, in [78], Tezcan and
Temizel show that the highly parallel structure of graphics processing units (GPUs)
are suitable for the verification of differentials and, by performing 244.5 reduced-round
PRESENT encryption in less than 8 hours using a single Tesla k20 GPU, they show that
the theoretically obtained p0 for ∆6 is actually correct. Although Blondeau claims in
[17] that ∆5 was used to attack PRESENT in [75], it does not appear there since [75]
is only an abstract in a book of abstracts. Apparently Blondeau confuses an earlier
version of the paper [77] with [75], which is available on the web.

Moreover, we observed that by removing the last rounds, ∆6 is also valid when it
is reduced to 9 or 8 rounds and ∆5 is not valid even when it is reduced to 7 or 6
rounds. Since the validity of ∆6 reduced to 8 rounds and ∆5 reduced to 6 rounds can
be checked using just a few hundred plaintext pairs, this way we can easily check the
validity of the assumptions made when constructing improbable differentials. Thus, it
can be seen that ∆5 fails due to the existence of 6-round high-probability differentials
for PRESENT. We provide the experimental results on ∆6 in Table 4.1.

Note that this approach does not apply to the improbable differentials of CLEFIA re-
duced to 8 or 7 rounds since the 9-round impossible differentials

∆1 : [0(32), 0(32), 0(32), [X, 0, 0, 0](32)] 99r [0(32), 0(32), 0(32), [0, Y, 0, 0](32)], p = 2−120
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and

∆2 : [0(32), 0(32), 0(32), [0, 0, X, 0](32)] 99r [0(32), 0(32), 0(32), [0, Y, 0, 0](32)], p = 2−120

are obtained using the properties of the M0 matrix of the eighth round, and the differ-
entials obtained by removing the last rounds of ∆1 and ∆2 are no longer impossible.
This also favors the validity of the improbable differentials ∆3|∆1 and ∆4|∆2 since
they can only fail if there exist 9-round high-probability differentials with the same
input and output differences.

∆3 : [[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)]
∆4 : [[0, 0, ψ, 0](32), ζ

′
(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [0, 0, ψ, 0](32)]

Table 4.1: Comparison of the theoretically and experimentally calculated values of p0
of ∆6 over 8, 9, and 10 rounds. The results indicate that the experimental values agree
with and in fact are better than the theoretically calculated values.

Length p p0 pE

8 rounds 2−1.192645 2−1.192651 2−1.192661

9 rounds 2−12.192645 2−12.192651 2−12.193691

10 rounds 2−13 2−13.000006 2−13.001046

Verification of the 10-round improbable differentials used in the attacks on CLEFIA are
beyond our computational power. For this reason Blondeau constructs a toy Feistel
cipher with six data lines of 4-bit words and experiments on an 11-round improbable
differential ∆7 with p = 2−20 and p0 = 2−20.42 [17].

∆7 : [X, Y, 0, 0, 0, 0]→11r [0, 0, 0, Z, 0, 0], p = 2−20

The experimental result1 of pE = 2−20.28 being greater than p0 is valid only for this toy
cipher, and the reason for this difference is the small block size and the slow diffusion
of the toy cipher. It can easily be verified that the theoretical probabilities of similar im-
probable differentials match the practical ones in similar toy ciphers with larger block
size or better diffusion. For instance, by adding two more data lines to Blondeau’s toy
cipher (i.e., the same cipher with eight data lines of 4-bit words), we can experiment
on a 15-round improbable differential ∆8 with p = 2−28 and p0 = 2−28.42 which is
obtained in a similar fashion.

∆8 : [X, Y, 0, 0, 0, 0, 0, 0]→15r [0, 0, 0, 0, 0, Z, 0, 0], p = 2−28

This time, the experimental probability becomes pE = 2−28.52 which is even better
than the theoretical one.

1 Note that this differential is valid only when S(a)⊕S(a+X) = Y , where X and Y differences are chosen
according to the DDT of the S-box used. However, in [12] some of the experimental results were given for arbitrary
X and Y regardless of such consistency with the DDT. Obviously such results cannot be used to judge the accuracy
of the differential being studied.
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4.3.1 Expansions with Two Differentials

There is no easy way to theoretically compute the probability of an improbable dif-
ferential obtained by expanding an impossible differential with two differentials. We
observed that if these differentials were considered as independent statistical events,
then the probability would be (1 − p1p2) · p. Hence the probability of the improbable
differential should be between (1 − p1p2) · p and p. But the attack would fail if it is
closer to p than expected. There are no improbable differential attacks in the litera-
ture that use expansions with two differentials and we were not able to construct one
that can be checked with our computational power. However, the uniformity assump-
tion that is made in the single differential expansion appears twice in this case and the
third assumption is the independency of the events. For this reason we suggest that
only the experimentally verified expansions with two differentials should be used in
cryptanalysis.

4.3.2 On Constructing Expansions

An intuition for constructing improbable differentials using the expansion technique
is, first obtain the longest impossible differential and then combine it with a suitable
differential with high probability. The main parameters p and p′ here come from the
impossible differential and the expansion differential combined with it, respectively.
Therefore, knowing how p and p′ affect the attack complexity can help the cryptanalyst
to obtain the optimal improbable differentials, instead of always beginning with the
longest impossible differential available.

In [18, 20], aside from providing accurate estimates for data complexity and success
probability for various statistical cryptanalysis techniques, Blondeau et al. also ob-
served that the behaviour of the number of pairs required to perform an attack is dom-
inated by D(p0||p)−1. Note that a similar observation was made by Daemen et al. for
differential power analysis [30].

We first recall the Kullback-Leibler divergence which plays an important role in these
estimates.

Definition 4.1 (Kullback-Leibler divergence [29]). Let P andQ be two Bernoulli prob-
ability distributions of parameters p and q. The Kullback - Leibler divergence between
P and Q is defined by

D(p||q) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
. (4.1)

We can observe the following result on the Kullback-Leibler divergence for the im-
probable differentials:

Proposition 4.1. An improbable differential attack with p′ � p0 has data complexity
O((p′)2 · p)−1.
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Proof. We use the fact that ln(1− p) ≈ −p for small p.

D(p0||p) = p0 ln(p0
p

) + (1− p0) ln(1−p0
1−p )

= p0 ln(1− p′) + (1− p0) ln(1−p0
1−p ) (since p0

p
= 1− p′)

≈ p0(−p′) + (1− p0)(p− p0) (since ln(1− p) ≈ −p)
≈ p0(−p−p0

p
) + (1− p0)(p− p0) (since p′ = p−p0

p
)

≈ (p− p0)(−p0
p

+ 1− p0)
≈ (p− p0)(−1 + p′ + 1− p0) (since p0

p
= 1− p′)

≈ (p′ · p)(p′ − p0) (since p− p0 = p′p)
≈ (p′)2p− p′ · p · p0
≈ (p′)2 · p (since p′ � p0)

Thus, we conclude that an improbable differential attack that uses the expansion tech-
nique has data complexity O((p′)2 · p)−1. This results can be experimentally verified
by running the Algorithm 4.1,which is going to be defined in the following Section,
with different inputs.

4.4 Data Complexity and Success Probability

Since p0 is less than p, our aim is to use N plaintext pairs and count the hits that
every guessed subkey gets and expect that the counter for the correct subkey to be less
than a threshold T . Number of hits a wrong subkey gets can be seen as a random
variable of a binomial distribution with parameters N , p (and a random variable of a
binomial distribution with parameters N , p0 for the correct subkey). We denote the
non-detection error probability with pnd which is the probability of the counter for the
correct subkey to be higher than T . And we denote the false alarm error probability
with pfa which is the probability of the counter for a wrong subkey to be less than or
equal to T . Therefore, the success probability of an improbable differential attack is
1− pnd.

Accurate estimates of the data complexity and success probability for many statistical
attacks are provided by Blondeau et al. in [18, 20] and these estimates can be used for
improbable differential attacks with some modifications. Unlike improbable differen-
tial cryptanalysis, in most of the statistical attacks p0 > p and this assumption is made
throughout [18]. Hence, we need to modify the approximations N ′, N ′′ and N∞ of the
number of required samples N that are given in [18] for the p0 < p case in order to use
them for improbable differential attacks.

We modify Algorithm 1 of [18] for the p0 < p case which computes the exact number
of required samples N and corresponding relative threshold τ := T

N
to reach error

probabilities less than (pnd, pfa). The estimates for non-detection and false alarm error
probabilities are denoted by Gnd(N, τ) and Gfa(N, τ).
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Algorithm 4.1. (from [18], modified for the p0 < p Case)
Input : p0, p, pnd, pfa
Output : N , τ
τmin := p0, τmax := p
r ep ea t

τ := τmin+τmax

2
Compute Nnd such that ∀N > Nnd, Gnd(N, τ) ≤ pnd
Compute Nfa such that ∀N > Nfa, Gfa(N, τ) ≤ pfa
i f Nnd > Nfa then τmin = τ
e l s e τmax = τ

u n t i l Nnd = Nfa
N := Nnd
Return N , τ

Nnd and Nfa can be calculated by a dichotomic search and the following Equations
4.2 and 4.3 can be used for the estimates Gnd(N, τ) and Gfa(N, τ), respectively. The
number of samples obtained from the algorithm with these estimates is denoted by
N∞.

Theorem 4.2 ([2]). Let p0 and p be two real numbers such that 0 < p0 < p < 1 and let
τ such that p0 < τ < p. Let Σ0 and Σk follow a binomial law of respective parameters
(N, p0) and (N, p). Then as N →∞,

P (Σ0 ≥ τN) ∼ (1− p0)
√
τ

(τ − p0)
√

2πN(1− τ)
e−ND(τ ||p0), (4.2)

and

P (Σk ≤ τN) ∼ p
√

1− τ
(p− τ)

√
2πNτ

e−ND(τ ||p). (4.3)

A simple approximation N ′ of N is defined in [18] when the relative threshold is
chosen as τ = p0 which makes non-detection error probability pnd of order 1/2. We
define N ′ for the p0 < p case as in [16]:

Proposition 4.3. For a relative threshold τ = p0, a good approximation of the required
number of pairs N to distinguish between the correctly keyed permutation and an
incorrectly keyed permutation with false alarm probability less than or equal to pfa is

N ′ = − 1

D(p0||p)

[
ln

(
ν · pfa√
D(p0||p)

)
+ 0.5 ln(− ln(ν · pfa))

]
(4.4)

where

ν =
(p− p0)

√
2πp0

p
√

(1− p0)
.

In [18] a good approximation of N ′ which is also valid for the p0 < p case is defined
as follows

N ′′ = − ln(2
√
πpfa)

D(p0||p)
. (4.5)
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CHAPTER 5

ATTACKS ON PRESENT

In this chapter, we show how undisturbed bits can be used to attack ciphers and present
12 and 13-round improbable differential attacks on PRESENT that exploit undisturbed
bits of PRESENT’s S-box. We published parts of this chapter in [77].

5.1 10-Round Improbable Differential

In Chapter 2 we obtained a 6-round impossible differential by using the undisturbed
bits of PRESENT’s S-box. Without using the undisturbed bits, the longest impossible
differential we could find for PRESENT had a length of 5-rounds with difference of the
60 out of 64 bits are fixed which means p = 2−60. However, by using the 6 undisturbed
bits of PRESENT, we can construct 5 and 6-round impossible differentials with only
13 and 39 bits fixed, respectively. In this section, by further using the undisturbed bits,
we construct a 5-round differential with probability 2−17.84 that can be combined with
the 5-round impossible differential. Hence, by using the expansion method, we con-
struct a 10-round improbable differential and provide improbable differential attacks
on PRESENT reduced to 12 and 13 rounds.

We use Xi = x15, . . . , x0 to denote the intermediate differences of the round i with x0
being the least significant nibble and 0 ≤ i ≤ 31. Moreover, we use P , S, I to the
denote output of the permutation layer, output of the substitution layer, and input of a
round, respectively.

Using the undisturbed bits of PRESENT that are provided in Table 2.7, we construct a
5-round impossible differential that is provided in Table 5.1.

Instead of combining our 6-round impossible differential with a 4-round differential,
we combined our 5-round impossible differential with a 5-round differential. This is
because, we have p = 2−13 and p = 2−39 for our 5 and 6-round impossible differ-
entials, respectively and the smaller probability p = 2−39 results in higher data and
time complexities. That choice also prevents us from performing a 13-round attack on
PRESENT. This change is due to the observation that an improbable differential attack
that uses the expansion technique has data complexityO((p′)2 ·p)−1, which is obtained
in Section 4.3.2.
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Table 5.1: A 5-Round Impossible Differential for PRESENT

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
X7,I 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 1001 0000 0000
X8,S 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 ???0 0000 0000
X8,P 0000 0000 0?00 0?00 0000 0000 0?00 0?00 0000 0000 0?00 0?00 0000 0000 0000 0000
X9,S 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000
X9,P 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000
X10,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000
X10,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0

X10,P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???x ???x ???x ???1
X11,S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 000x 000x 000x 0001
X11,P ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? xxx1
X12,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0001
X12,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???1

We extend the 5-round impossible differential given in Table 5.1 to a 10-round improb-
able differential by combining it with a 5-round characteristic which is given in Table
5.2.

Table 5.2: A 5-Round Differential Characteristic for PRESENT

Rounds Differences Probability
X2,I x2 = 1x, x0 = 1x 1
X3,S x2 = 9x, x0 = 9x 2−4

X3,P x12 = 5x, x0 = 5x 1
X4,S x12 = 1x, x0 = 1x 2−6

X4,P x3 = 1x, x0 = 1x 1
X5,S x3 = 9x, x0 = 9x 2−4

X5,P x12 = 9x, x0 = 9x 1
X6,S x12 = 4x, x0 = 4x 2−4

X6,P x11 = 1x, x8 = 1x 1
X7,S x11 = 3x, x8 = 3x 2−4

X7,P x6 = 9x, x2 = 9x 1

The total probability of the 5-round characteristic is 2−22 and hence for our 10-round
improbable differential we have p′ ≥ 2−22. However, a closer look at the character-
istic shows that this probability is much higher. Because in Table 5.1 we take input
differences of x6 and x2 as 9x at X7,I only to show that the impossible differential can
be combined with the characteristic. If we take the input difference of i S-boxes to be
9x where 1 ≤ i ≤ 16, the impossible differential still holds. Thus, the first round of
the impossible differential is satisfied if the S-boxes x12 and x0 at X6,S have the same
output differences and the affected S-boxes at X7,S have the same output differences.
By using the difference distribution table of PRESENT’s S-box provided in Table 5.3,
one can see that the probability of this event is

2−6 + 2−7 + 2−9 + 2−10 = 0.025634765625.
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Thus, the probability of our 10-round improbable differential becomes

p′ ≥ 0.025634765625 · 2−14 ≈ 2−19.29.

Table 5.3: Difference Distribution Table of PRESENT’s S-box

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2x 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3x 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4x 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5x 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6x 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7x 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8x 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9x 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
Ax 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
Bx 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
Cx 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
Dx 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
Ex 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
Fx 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

One way of obtaining the precise value of p′ is to search every possible 10-round
differential with the desired input and output differences. Instead, we experimentally
calculated p′ as 2−17.84 (for 100 randomly selected keys, we used 232 pairs in each
experiment and the mean value was 2−17.84 with a standard deviation of 2−22.40).

Note that the 5-round impossible differential and the 5-round differential are valid
for any consecutive 5 rounds of PRESENT because the rounds are almost identical.
However, the reason for starting the impossible differential at the 7th round and the
differential at the 2nd round of PRESENT is that we wanted to attack the first 12 and
13 rounds of PRESENT. This is not the case for our improbable differential attack on
SERPENT that is provided in Chapter 7.

5.2 Attack on PRESENT-80-12

We add two rounds above our 10-round improbable differential and attack 12 rounds
of PRESENT-80. The 12-round improbable differential attack is summarized in Table
5.4.

The attack procedure is as follows:

1. Choose 2n structures of 216 plaintexts each where x3, x2, x1, and x0 take all
possible values and other bits are fixed. Such a structure of plaintexts propose
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Table 5.4: 12-Round Improbable Differential Attack

Rounds Differences Probability
X0,I x3, x2, x1 =???? except 1x , 6x , 8x , and Ex , x0 = 2x , 4x , Ax , or Cx -
X1,S x3 = 0?0?, x2 = 0?0?, x1 = 0?0?, x0 = 0101 3−3 · 2−2

X1,P x8 =???1, x0 =???1 1

X2,S x8 = 1x, x0 = 1x 2−6

X2,P x2 = 1x, x0 = 1x 1

X3,S x2 = 9x, x0 = 9x 2−4

.

.

.
.
.
.

.

.

.
X12,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???1

33 · 223 pairs where x3, x2, x1 have any difference except 1x, 6x, 8x, and Ex and
x0 has difference 2x, 4x, Ax, or Cx. Hence we gather N = 33 · 2n+23 many
plaintext pairs.

2. Obtain all the ciphertexts and choose only the ciphertexts pairs where x12, x8,
and x4 have zero difference, x0 has difference L or x12, x4, and x0 have zero
difference, x8 has difference L just before the final permutation of the last round,
where L ∈ {1x, 2x, 4x, 8x}. Hence, there is a 13-bit filtering condition over the
ciphertext pairs and therefore, 33 · 2n+10 pairs remain.

Actually, taking L as non-zero is enough for the impossible differential to hold.
However, we experimentally verified that for the input difference of the improb-
able differential there are differentials which lead to weight one differences at x0
of X11,P with high probability. Hence, we chose L as a difference of weight one
and used the fact that PRESENT’s S-box does not map weight one differences to
weight one differences.

3. Guess 16 bits of the key k31, k30, . . . , k16 and partially encrypt every plaintext
pair. Keep only the pairs where x0 = 5x and x3, x2, x1 are of the form 0?0? after
the substitution. This filtering condition has probability 3−3 · 2−2 and 2n+8 pairs
remain.

4. Keep only the pairs where x8 and x0 have the difference 3x, 5x, 7x, Bx, Dx or
Fx after the permutation. Hence 6

8
6
8
· 2n+8 pairs remain.

5. Guess 8 bits of the key k70, k69, k68, k67, k38, k37, k36, k35 and partially encrypt
every pair at X1,P . Increase the counter of the corresponding key by 1 if a pair
satisfies x8 = 1x and x0 = 1x at X2,S . We expect 1

36
6
8
6
8
· 2n+8 = 2n+2 many pairs

to satisfy this property for a guessed key.

6. For every recorded 24-bit subkey with counter less than the threshold T , re-
maining bits of the key can be obtained by repeating the attack by replacing the
5-round differential with a different one with similar probability.

The attack is on 24 bits of the key and we expect pfa · 224 many subkeys to get hits
less than or equivalent to threshold T . The probability of satisfying the improbable
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differential for a wrong subkey is

p =
1

36

6

8

6

8
· 3−3 · 2−2 · 2−13 = 3−3 · 2−21.

We use Algorithm 4.1 from Section 4.4 to estimate required number of pairs N to
attack with a given success probability. To minimize the time complexity, we select
pnd = 0.001 and pfa = 2−25 as the input of the Algorithm 4.1 and we obtain N =
267.62 and T = 4015639374946 ≤ 242. Thus, the data complexity of the attack is
267.62−23+16 · 3−3 ≈ 255.87 chosen plaintexts and memory complexity is about 224 42-
bit counters. Time complexity of the attack is dominated by step 3. At this step, instead
of trying every possible 16-bit subkey for a pair, we can create a table to store pairs of
16-bit inputs with the desired difference that provide the desired output difference (size
of such a table is negligible when compared to the size of the counters). Hence, the
values of the keys can be obtained by one table look-up for every pair. Since we repeat
this step for 254.62 pairs, time complexity of the attack is 254.62 memory accesses.

5.3 Attack on PRESENT-80-13

The 12-round improbable attack can be extended to a 13-round attack by putting one
more round with 2−4 probability at the top of our 5-round characteristic. We select
pnd = 0.001 and pfa = 2−25 and the data complexity becomes 263.86 chosen plaintexts,
memory complexity is about 224 50-bit counters and the time complexity is 262.62 mem-
ory accesses. Data complexity of these improbable differential attacks can be reduced
by reducing pnd or increasing pfa. Attacks on PRESENT-80 are summarized in Ta-
ble 5.5.

Table 5.5: Summary of the Attacks on PRESENT-80

#Rounds Attack Type Data Time Memory Success Reference
12 Improbable Differential 255.87 CP 254.62 MA 42 · 224 bits 99.9% Sect. 5.2
13 Improbable Differential 263.85 CP 262.62 MA 50 · 224 bits 99.9% Sect. 5.3
16 Differential 264 CP 264 MA 6 · 232 bits 99.99% [84]
18 Multiple Differential 264 CP 271.72 En 232 blocks 94% [19]
24 Linear (for weak keys) 263.5 KP 240 En 240 blocks 95% [60]
24 Statistical Saturation (theoretical) 257 CP 257 En 232 counters n/a [27]
26 Multiple Linear 264 KP 272 En 231 blocks 95% [26]

Note that the same improbable differential attacks can be applied to PRESENT-128
with similar complexities.
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CHAPTER 6

ATTACKS ON CLEFIA

In this chapter, we present 10-round improbable differentials and introduce an im-
probable differential attack on 13-round CLEFIA with key length of 128 bits. We also
introduce improbable differential attacks on 14 and 15-round CLEFIA for key lengths
196 and 256 bits. Moreover, we provide a practical improbable differential attack on
6-round CLEFIA . In these attacks our aim is to derive the round keys and we do not
consider the key scheduling part as done in [69, 80, 81].

These attacks were published in 2010 in [74] and they were the best attacks on CLEFIA.
In Section 6.6 of this chapter, we provide the improved improbable differential attacks
on CLEFIA-128, CLEFIA-192, and CLEFIA-256 and to the best of our knowledge, these
are the best attacks on this cipher. These attacks show the power and importance of the
improbable differential cryptanalysis.

6.1 10-round Improbable Differentials

We will use the following two 9-round impossible differentials that are introduced in
[80],

∆1 : [0(32), 0(32), 0(32), [X, 0, 0, 0](32)] 99r [0(32), 0(32), 0(32), [0, Y, 0, 0](32)]
∆2 : [0(32), 0(32), 0(32), [0, 0, X, 0](32)] 99r [0(32), 0(32), 0(32), [0, Y, 0, 0](32)]

where X(8) and Y(8) are non-zero differences. We obtain 10-round improbable dif-
ferentials by adding the following one-round differentials to the top of these 9-round
impossible differentials,

∆3 : [[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)]
∆4 : [[0, 0, ψ, 0](32), ζ

′
(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [0, 0, ψ, 0](32)]

which hold when the output difference of the F0 function is ζ (resp. ζ ′) when the input
difference is [ψ, 0, 0, 0] (resp. [0, 0, ψ, 0]). We choose ψ and corresponding ζ and ζ ′
depending on the DDT of S0 in order to increase the probability of the differential.
One can observe that the values 10, 8, 6 and 4 appear 9, 119, 848 and 5037 times in the
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DDT of S0, respectively. So we have 9 + 119 + 848 + 5037 = 6013 nonzero entries.
When ψ, ζ and ζ ′ are chosen according to these differences, the average probability of
the 10-round improbable differentials becomes

p′ =
9 · 10 + 119 · 8 + 848 · 6 + 5037 · 4

256 · 6013
≈ 2−5.87.

6.2 Improbable Differential Attack on 13-Round CLEFIA

We put one additional round on the plaintext side and two additional rounds on the
ciphertext side of the 10-round improbable differentials to attack first 13 rounds of
CLEFIA that captures RK1, RK23,1 ⊕WK2,1, RK24, and RK25.

We place the whitening key WK2 at the XOR with the 11th-round output word x{11,2}
and XOR withRK23. Moreover, we place the whitening keyWK1 at the XOR with the
first round output word x{1,2}, as shown in Fig. 6.1. These movements are equivalent
transformations.

∆x{0,0}=0 ∆x{0,1}=[ψ,0,0,0] ∆x{0,2}=ζ ∆x{0,3}=X

∆x{1,0}=[ψ,0,0,0] ∆x{1,1}=ζ ∆x{1,2}=0 ∆x{1,3}=0

∆x{11,3}=0∆x{11,2}=[0,Y,0,0]∆x{11,1}=0∆x{11,0}=0

∆x{12,3}=0∆x{12,2}=β∆x{12,1}=[0,Y,0,0]∆x{12,0}=0

∆x{13,0}=0 ∆x{13,1}=[0,Y,0,0] ∆x{13,2}=β ∆x{13,3}=γ

F0 F1

F0

F0

F0

F1

F1

F1

} 10-round
improbable
di�erential
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.
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Figure 6.1: Improbable differential attack on 13-round CLEFIA
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6.2.1 Data Collection

For a single choice of ψ and corresponding ζ values, we choose 2K structures of plain-
texts where the first word x{0,0} and the second, third and fourth bytes of the second
word x{0,1} are fixed (similarly, we fix the first, second and fourth bytes of the second
word x{0,1} for a choice of ψ and ζ ′). We construct pairs where the first byte (resp.
third byte) of the second word x{0,1} has the difference ψ, the third word x{0,2} has
the difference ζ (resp. ζ ′) and the fourth word x{0,3} has the same difference with the
output difference of F1, which is obtained from the guessed round key RK1, when the
input difference of F1 is ζ (resp. ζ ′). Such a structure proposes 2 · 6013 · 271 pairs.

We keep the ciphertext pairs having the difference [0, [0, Y, 0, 0], β, γ] where γ is non-
zero and β represents every 255 difference value that can be obtained from the multi-
plication of M1 with [0, Y, 0, 0]t. Such a difference in the ciphertext pairs is observed
with a probability of

1

232
· 255

232
· 255

232
· 232 − 1

232
≈ 2−80.

Therefore, 6013 · 2K−8 pairs remain.

6.2.2 Key Recovery

We keep counters for RK23,1 ⊕WK2,1|RK24|RK25 for every guess of RK1 and in-
crease the corresponding counter when the improbable differential is obtained with
a guessed key. Keys satisfying the improbable differential are obtained by differen-
tial table look-ups indexed on the input and the output differences of the 12th-round
F1 and 13th-round F1. The probability of satisfying the improbable differential for
a wrong key is p = 2−40 from the average probabilities 2−8 and 2−32 for the 12th
and 13th-round F1 functions respectively. Therefore, the probability of obtaining the
improbable differential for the correct key is p0 = p · (1− p′) ≈ 2−40.02.

During the attack we try to obtain the 104-bit round key, namely RK1, RK23,1 ⊕
WK2,1, RK24, RK25 and for the correct key to get the least number of hits, false alarm
probability pfa must be less than 2−104. Feeding the Algorithm 4.1 with the inputs p,
p0, pfa = 2−105, and pnd = 0.01 shows that when the threshold T is 673474 < 220,
N ≈ 259.38 pairs are needed for the correct key to remain below the threshold and all
of the wrong ones to remain above it with a success probability of 99%.

6.2.3 Attack Complexity

With the 280 ciphertext filtering conditions, we need 280 · 259.38 = 2139.38 pairs to
perform the attack. Since we have 6013 choices for ψ, we need 2K ≈ 254.83 structures
so that 6013·272+K = 2139.38. Hence, the data complexity of the attack is 2126.83 chosen
plaintexts.
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For every guess of RK1 and RK24 and for every choice of ψ, we perform 259.38 F-
function computations which is

264 · 259.38 · 1

2
· 1

13
≈ 2118.68

encryptions. However, the time complexity is 2126.83 encryptions for obtaining the
ciphertexts.

The memory complexity of the attack comes from the 20-bit counters kept for the 104-
bit round keys RK1|RK23,1 ⊕WK2,1|RK24|RK25, which require 20 · 2104 ≈ 2108.32

bits.

6.3 Improbable Differential Attack on 14-Round CLEFIA

We expand our 13-round attack by one round on the ciphertext side to break 14-round
CLEFIA for the key length of 192 or 256 bits. This attack captures 168 bits of the round
keys, namely RK1, RK23,1, RK24 ⊕WK3, RK25 ⊕WK2, RK26, and RK27.

We move the whitening keys WK1, WK2, and WK3 in the same way as in the 13-
round attack.

6.3.1 Data Collection

We generate pairs in the same way as in the 13-round attack and we want 13th-round
output difference to be [[0, Y, 0, 0], β, γ, 0] to perform the attack. Consequently, we
keep the ciphertext pairs satisfying the difference [[0, Y, 0, 0], β′, γ, δ] where γ and δ
are non-zero and β′ is the XOR of β with the 255 possible values that can be obtained
from the multiplication of M0 with [0, Y, 0, 0]t. Such a difference in ciphertext pairs is
observed with a probability of

255

232
· 255 · 255

232
· 232 − 1

232
· 232 − 1

232
≈ 2−40.

Therefore, 6013 · 2K+32 pairs remain.

6.3.2 Key Recovery

We guess the second byte of RK24 and check if the second word of the output of 13th-
round has difference β. The probability of this event is 2−8 and therefore, 6013 · 2K+24

pairs remain. In order to check whether the 72-bit key RK23,1|RK25 ⊕WK2|RK27

satisfies the improbable differential, we use differential tables indexed on the input and
output differences of the 12th-round, 13th-round and 14th-round F1 functions. The
input values of these F1 functions are obtained by the guesses of RK24 ⊕WK3 and
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the first, third and fourth bytes of RK26. The input of the 13th-round F0 is obtained
from RK27 candidates.

The probability of a candidate key to satisfy the improbable differential using three F1

differential tables is p = 2−72 from the average probabilities 2−8, 2−32 and 2−32 for
the 12th, 13th and 14th-round F1 functions, respectively. Feeding the Algorithm 4.1
with the inputs p, p0, pfa = 2−169, and pnd = 0.01 shows that when the threshold T is
1022026 < 220, N ≈ 291.98 pairs are needed for the correct key to remain below the
threshold and all of the wrong ones to remain above it with a success probability of
99%.

Keeping a key table for the attacked 168 key bits would require a memory that exceeds
2128 blocks where a block is 128 bits long. For this reason, we keep all of the 2127.43

plaintexts in a table, then guess RK1 and choose the plaintext pairs for the attack.

6.3.3 Complexity

We need 291.98+40+8 = 2139.98 pairs in total to perform the attack. Since we have 6013
choices for ψ, we need 2K ≈ 255.43 structures so that 6013 · 272+K = 2139.98. Hence,
the attack has data complexity of 2127.43 chosen plaintexts.

For every guess of RK1, RK24 ⊕ WK3, and RK26, we perform 291.98 F-function
computations which is

296 · 291.98 · 1

2
· 1

14
≈ 2183.17

encryptions.

We keep 20-bit counters for the 72-bit keys RK23,1|RK25⊕WK2|RK27 but the mem-
ory complexity is dominated by the ciphertext table of 2127.43 blocks.

6.4 Improbable Differential Attack on 15-Round CLEFIA

We expand the 14-round improbable differential attack by one round on the ciphertext
side to attack 15-round CLEFIA in which we exhaustively search for the 15th-round
keys RK28 and RK29. Our aim is to obtain the value of the 232-bit round key, namely
RK1, RK23,1, RK24, RK25, RK26 ⊕WK3, RK27 ⊕WK2, RK28 and RK29.

We move the whitening keys WK1, WK2, and WK3 in the same way as in the 14-
round attack.

For the inputs p = 2−72, p0, pfa = 2−233, and pnd = 0.01, Algorithm 4.1 produces the
outputs N ≈ 292.40 and T = 1361613 < 221. Hence, the data complexity of the attack
is 2127.85 chosen plaintexts and the memory complexity is 2127.85 blocks.

The time complexity of the attack comes from 292.40 F-function computations forRK1,
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RK24, RK26 ⊕WK3 guesses and the exhaustive search of RK28 and RK29, which is

292.40 · 296 · 264 · 1

2
· 1

15
≈ 2247.49

encryptions.

6.5 Practical Improbable Differential Attack on 6-Round CLEFIA

From the 9-round impossible differential that was used in Section 6.1, one can easily
obtain the following 4-round impossible differential

[0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)] 94r [?(32), ?(32), ?(32), ψ
′
(32)]

where ψ′ is any difference other than ψ. We obtain a 5-round improbable differential
by adding the following 1-round differential

[[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)]

to the top of the 4-round impossible differential. The differential holds with probability
p′ = 10

256
if we choose ψ = 08000000x and ζ = 7EFCE519x.

In order to attack 6-round CLEFIA, we prepare plaintext pairs with the difference
[[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)]. Then we guess RK11 and increase the counter for
the guessed RK11 if X5,3 has the difference ψ′(32). We expect the correct RK11 to have
the smallest counter.

Feeding the Algorithm 4.1 with the inputs p = 1−2−32, p0 = p · (1− 10
256

), pfa = 2−33,
and pnd = 0.01 shows that when the threshold T is 184, N = 185 pairs are needed for
the correct RK11 to remain below the threshold and all of the wrong ones to remain
above it with a success probability of 99%.

6.5.1 Summary of Attacks

Results of these improbable differential attacks and the impossible differential attacks
of [80] on CLEFIA are summarized in Table 6.1.

6.6 Improved Improbable Differential Attacks on CLEFIA-128, CLEFIA-192,
and CLEFIA-256

In previous section of this Chapter, we provided the improbable differential attacks on
CLEFIA as it was published in [74]. The main problem with these attacks is the high
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Table 6.1: Results of the impossible differential attacks of [80] and improbable differ-
ential attacks on CLEFIA

#Rounds Attack Key Size Data Time Memory Success Reference
12 Impossible 128, 192, 256 2118.9 CP 2119 En 273 blocks - [80]
13 Improbable 128, 192, 256 2126.83 CP 2126.83 En 2101.32 blocks 99% Sect. 6.2
13 Impossible 192, 256 2119.8 CP 2146 En 2120 blocks - [80]
14 Improbable 192, 256 2127.43 CP 2183.17 En 2127.43 blocks 99% Sect. 6.3
14 Impossible 256 2120.3 CP 2212 En 2121 blocks - [80]
15 Improbable 256 2127.85 CP 2247.49 En 2127.85 blocks 99% Sect. 6.4

data complexity. In this section we improve these attacks by modifying the impossible
differential and characteristic that are combined using the expansion technique. For
the attack on CLEFIA-128, we also use a weakness in the key schedule discovered by
Zhang et al. [88].

6.6.1 Modifying the Impossible Differential

Instead of ∆1 and ∆2, we are going to use the following two 9-round impossible dif-
ferentials of [81],

∆′1 : [0(32), 0(32), 0(32), [X, 0, 0, 0](32)] 99r [0(32), 0(32), 0(32), [Y, 0, Z, 0](32)], p = 2−112

∆′2 : [0(32), 0(32), 0(32), [0, 0, X, 0](32)] 99r [0(32), 0(32), 0(32), [Y, 0, Z, 0](32)], p = 2−112

where X(8), Y(8), and Z(8) are non-zero differences. This change reduces p by a factor
of 28. Thus, the required number of pairs and therefore the data complexity of the
attacks reduce by a factor of 28. Since the key guess step is repeated for every pair,
time complexity of this step reduces by a factor of 28, too. Due to the change in the
output difference of the impossible differential, this time we keep a differential table for
RK23,0⊕WK2,0|RK23,2⊕WK2,2|RK25 instead ofRK23,1⊕WK2,1|RK25, which has
negligible effect on the memory complexity. However, since we are guessing 8 more
bits, we decrease our false alarm probability pfa and this results in a slight increase in
data and time complexity, namely around a factor of 20.04.

This improvement is valid for our 13, 14, and 15 round attacks and the main improve-
ment in the complexities comes from this step. The improved improbable differential
attack on CLEFIA reduced to 13 rounds is shown in Fig. 6.2.

6.6.2 Modifying the Expansion

Similar to what was described in Section 6.1, we obtain 10-round improbable dif-
ferentials by adding the following one-round differentials to the top of these 9-round
impossible differentials,
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∆x{0,0}=0 ∆x{0,1}=[ψ,0,0,0] ∆x{0,2}=ζ ∆x{0,3}=X

∆x{1,0}=[ψ,0,0,0] ∆x{1,1}=ζ ∆x{1,2}=0 ∆x{1,3}=0

∆x{11,3}=0∆x{11,2}=[Y,0,Z,0]∆x{11,1}=0∆x{11,0}=0

∆x{12,3}=0∆x{12,2}=β∆x{12,1}=[Y,0,Z,0]∆x{12,0}=0

∆x{13,0}=0 ∆x{13,1}=[Y,0,Z,0] ∆x{13,2}=β ∆x{13,3}=γ
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Figure 6.2: Improved improbable differential attack on 13-round CLEFIA

∆3 : [[ψ, 0, 0, 0](32), ζ(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [ψ, 0, 0, 0](32)]
∆4 : [[0, 0, ψ, 0](32), ζ

′
(32), 0(32), 0(32)]→1r [0(32), 0(32), 0(32), [0, 0, ψ, 0](32)]

which hold when the output difference of the F0 function is ζ (resp. ζ ′) when the
input difference is [ψ, 0, 0, 0] (resp. [0, 0, ψ, 0]). We choose ψ and corresponding ζ and
ζ ′ depending on the DDT of S0. One can observe that the values 10, 8, 6, 4, and 2
appear 9, 119, 848, 5037, and 19501 times in the DDT of S0, respectively. So we have
9 + 119 + 848 + 5037 + 19501 = 25514 nonzero entries. In the original attacks, only
the differences observed for 10, 8, 6, and 4 times in DDT are considered to have higher
p′ which was around 2−5.87. If we also take into account the differences that have the
value 2 in the DDT then the probability p′ decreases to

p′ =
9 · 10 + 119 · 8 + 848 · 6 + 5037 · 4 + 19501 · 2

256 · 25514
≈ 2−6.64.

Although this change decreases p′ and therefore increases the number of pairs required
to perform the attack by a factor of 21.55, due to the new ψ and ζ values we can generate
22.09 more pairs. Thus, this change also decreases the data and time complexity of the
attacks by a factor of 22.09−1.55 = 20.54. The intuition for this improvement comes from
Proposition 4.1.

This improvement is valid for our 13, 14, and 15-round attacks.
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6.6.3 Key Schedule Weakness of CLEFIA-128

In [88], authors claimed an attack on 14-round CLEFIA-128 without the whitening keys
but CLEFIA design team pointed out a flaw in their attack. Although the proposed at-
tack was not better than any generic attack, authors’ idea of attacking the intermediate
key L instead of the master key K showed a weakness in the key schedule of CLE-
FIA-128 for the first time. This weakness in the key schedule was later used in [51]
and [73] to extend the 12-round impossible differential attacks to 13-round impossible
differential attacks.

If we represent the bits of the 128-bit intermediate key L as l0∼127, then the relation
between L and RK1 and RK24 can be shown as follows: RK1 = l32∼63 ⊕ c and
RK24 = l42∼63|l121∼127|l114∼116 ⊕ c′ for some constants c and c′.

Thus, the guessed round keys RK1 and RK24 have 22 bits in common. Therefore, we
do not need to guess these common bits twice in our 13-round attack on CLEFIA-128.
Hence, the attack is on 74 bits of L and the 16 bits RK23,0⊕WK2,0|RK23,2⊕WK2,2,
instead of 112 bits of round keys. When attacking 112 bits of the round key in the
original attack, false alarm probability was chosen as pfa = 2−113 to have the correct
round key below the threshold T and all wrong round keys above it. However, when
attacking 90 bits, we can choose pfa = 2−30 to have 30 bits of advantage and then we
obtain the whole 128-bit L by exhaustive search.

Table 6.2: Relation between round keys and intermediate key L for CLEFIA-128 (com-
mon bits are shown in bold)

Corresponding Bits of Intermediate Key L
RK1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
RK24 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

58 59 60 61 62 63 121 122 123 124 125 126 127 114 115 116
RK25 117 118 119 120 107 108 109 110 111 112 113 100 101 102 103 104

105 106 93 94 95 96 97 98 99 86 87 88 89 90 91 92

CLEFIA has different key schedules for CLEFIA-192 and CLEFIA-256 and the key
schedule weakness of CLEFIA-128 is not valid for CLEFIA-192 and CLEFIA-256.

The input and output values of Algorithm 4.1 for these improved attacks are listed in
Table 6.3.

With these N and T values, the resulting data, time and memory complexities of the
improved attacks are explained in the following subsections and summarized in Table
6.4.

61



Table 6.3: List of Algorithm 4.1 input and outputs of the improbable differential attacks
on CLEFIA

#Rounds p p′ pfa pnd N T Reference
13 2−120 2−5.87 2−105 0.01 2139.38 673474 Sect.6.2
13 2−112 2−6.64 2−113 0.01 2133.03 2112318 Sect.6.6
13 2−112 2−6.64 2−30 0.01 2131.42 676646 Sect.6.6

14 2−120 2−5.87 2−169 0.01 2139.98 1022026 Sect.6.3
14 2−112 2−6.64 2−177 0.01 2133.59 3134325 Sect.6.6

15 2−120 2−5.87 2−233 0.01 2140.40 1361613 Sect.6.4
15 2−112 2−6.64 2−241 0.01 2133.99 4131860 Sect.6.6

6.6.4 Complexity of the Improved Attacks

6.6.4.1 13-round Attack on CLEFIA-128

For the 13-round attack on CLEFIA-128, we use all three of the above improvements.
For the inputs p = 2−112, p0, pfa = 2−30, and pnd = 0.01, Algorithm 4.1 produces the
outputs N ≈ 2131.42 and T = 676646 < 220. Thus, with the 264 ciphertext filtering
conditions, we need 264 · 267.42 = 2131.42 pairs to perform the attack. Since we have
25514 choices for ψ, we need 2K ≈ 244.78 structures so that 25514 · 272+K = 2131.42.
Hence, the data complexity of the attack is 2116.78 chosen plaintexts.

For every guess of RK1 and RK24 and for every choice of ψ, we perform 267.42 F
function computations which is

264−22 · 267.42 · 1

2
· 1

13
≈ 2104.72

encryptions. However, we need to perform 2116.78 encryptions to obtain plaintext-
ciphertext pairs and 290−30+38+16 = 2114 encryptions for exhaustive search of the full
key. Thus, the expected time complexity of the attack is 2116.78+2114+2104.72 ≈ 2116.98

encryptions.

The memory required for storing the 20-bit counters kept for the 90-bit round keys
RK1|RK23,0 ⊕WK2,0|RK23,2 ⊕WK2,2|RK24|RK25 is 20 · 290 ≈ 294.32 bits.

If we only use the first two improvements and do not use the key schedule weakness,
then the attack becomes valid for all key sizes. But this time we need to choose pfa =
2−113 so that only the correct round key remains below the threshold T . This time the
Algorithm 4.1 outputs become N = 2133.03 and T = 2112318 < 222, and we get data
and time complexities as 2118.39 with a memory complexity of 22 · 2112 ≈ 2116.46 bits.
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6.6.4.2 14-round Attack on CLEFIA-192 and CLEFIA-256

For the inputs p = 2−112, p0, pfa = 2−177, and pnd = 0.01, Algorithm 4.1 produces the
outputs N ≈ 2133.59 and T = 3134325 < 222. Hence, the data complexity of the attack
is 2118.95 chosen plaintexts and the memory complexity is 2118.95 blocks.

For every guess of RK1, RK24 ⊕ WK3, and RK26, we perform 291.98 F function
computations which is

296 · 285.49 · 1

2
· 1

14
≈ 2177.68

encryptions.

6.6.4.3 15-round Attack on CLEFIA-256

For the inputs p = 2−112, p0, pfa = 2−241, and pnd = 0.01, Algorithm 4.1 produces the
outputs N ≈ 2133.99 and T = 4131860 < 222. Hence, the data complexity of the attack
is 2119.35 chosen plaintexts and the memory complexity is 2119.35 blocks.

The time complexity of the attack comes from 285.99 F function computations forRK1,
RK24, RK26 ⊕WK3 guesses and the exhaustive search of RK28 and RK29, which is

285.99 · 296 · 2 · 264 · 1

2
· 1

15
≈ 2242.08

encryptions.
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Table 6.4: Comparison of our attack with the previous attacks on CLEFIA. Our attack
is among the deepest penetrating attacks on all key sizes of CLEFIA. Furthermore, it
has the best data and time complexities on all versions.

#Rounds Attack Key Size Data Time Memory Success Reference
12 Impossible All 2118.9 CP 2119 En 273 blocks - [80]
12 Impossible All 2108 CP 2108 En 299 blocks - [81]
13 Improbable All 2126.83 CP 2126.83 En 2101.32 blocks 99% Sect. 6.2
13 Impossible 128 2119.4 CP 2125.52 En 2119.4 blocks - [73]
13 Impossible 128 2117.8 CP 2121.2 En 286.8 blocks - [51]
13 Improbable All 2118.39 CP 2118.39 En 2109.46 blocks 99% Sect. 6.6
13 Improbable 128 2116.78 CP 2116.98 En 287.32 blocks 99% Sect. 6.6
13 Impossible 192, 256 2119.8 CP 2146 En 2120 blocks - [80]
14 Improbable 1 192, 256 2127.43 CP 2183.17 En 2127.43 blocks 99% Sect.6.3
14 Multidim. ZC 192, 256 2127.5 KP 2180.2 En 2111 blocks - [21]
14 Improbable 192, 256 2118.95 CP 2177.68 En 2118.95 blocks 99% Sect. 6.6
14 Impossible 256 2120.3 CP 2212 En 2121 blocks - [80]
15 Improbable 2 256 2127.85 CP 2247.49 En 2127.85 blocks 99% Sect. 6.4
15 Multidim. ZC 256 2127.5 KP 2244.08 En 2111 blocks - [21]
15 Improbable 256 2119.35 CP 2242.08 En 2119.35 blocks 99% Sect. 6.6

1 Due to a calculation error, in [74] the data and memory complexities of this attack was reported as 2126.98

instead of 2127.43
2 Due to a calculation error, in [74] the data and memory complexities of this attack was reported as 2127.40

instead of 2127.85
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CHAPTER 7

ATTACKS ON SERPENT

In this chapter, we present 7-round improbable differential attack on SERPENT that
exploit undisturbed bits of SERPENT’s S-boxes. Moreover, we show the importance
of differential factors by correcting the advantage and improving the time complexity
of Dunkelman et al.’s differential-linear attacks on SERPENT by using the differential
factors of SERPENT’s S-boxes.

7.1 Improbable Differential Attacks on SERPENT

7.1.1 5.5-Round Impossible Differential

Without using undisturbed bits, the longest impossible differential we could find on
SERPENT had a length of 3.5 rounds. However, we obtained four 5.5-round impos-
sible differentials on SERPENT with the help of undisturbed bits and one of them is
shown in detail in Table 2.6. Here Si’s are the differences after the Si operations, LT
represents the differences after the linear transformation and question marks represent
indeterminate bit differences. The miss-in-the-middle is observed at the 13th bit of X3

after round 2. Note that 5.5-round impossible differentials we have found are infeasi-
ble to mount an attack since p = 2−128. Instead, by eliminating the last round of the
5.5-round impossible differential, we obtained a 4.5-round impossible differential with
p = 2−100 and used it to construct a 5.5-round improbable differential with probability
p′ = 2−4. We use this improbable differential to attack SERPENT reduced to 7 rounds.
This change is due to the observation that an improbable differential attack that uses
the expansion technique has data complexity O((p′)2 · p)−1, which is obtained in Sec-
tion 4.3.2. The 4.5-round impossible differential that we use in our attack is shown in
detail in Table 7.1.

7.1.2 7-Round Improbable Differential Attack

1. Choose 2n structures of 224 plaintexts each where bitslices b0, b3, b6, b7, b20 and
b23 take values L0, L3, L6, L7, L20 and L23, respectively and other bits are fixed.
Here
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Table 7.1: A 4.5-Round Impossible Differential for SERPENT

Input

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0001 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0010 0000 0000 0000 0000 0000 0000
X3: 0001 0000 0000 0000 0000 0000 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0100 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S1

X0: 0000 0000 0000 0?00 0000 0000 0000 0000
X1: 0000 0000 0000 0?00 0000 0000 0000 0000
X2: 0000 0000 0000 0100 0000 0000 0000 0000
X3: 0000 0000 0000 0?00 0000 0000 0000 0000

LT

X0: 0?00 100? 0000 0000 0000 0000 00?? 0010
X1: 0000 0000 0100 ?000 0000 0000 0000 000?
X2: 00?0 0000 0000 110? ?000 1000 0000 0000
X3: 0001 00?0 0000 0000 0000 0000 0000 0000

S2

X0: 0??1 ?0?? 0100 ??0? ?000 ?000 00?? 00??
X1: 0??? ?0?? 0?00 ??0? ?000 ?000 00?? 00??
X2: 0??? ?0?? 0?00 ??0? ?000 ?000 00?? 00??
X3: 0??? ?0?? 0?00 ??0? ?000 ?000 00?? 00??

LT

X0: ???? ???? ???? ???? ???? ???? ???? ????
X1: ???? 0??0 ??0? ???? ??0? ?1?? ???? 0???
X2: ???? ???? ???? ???? ???? ???? 1??? ????
X3: ?0?? ???? ???? 1?0? ??1? ??0? ???? ??0?

Impossible

LT

X0: ???? ???? ???? ???? ??0? ???? ???? ????
X1: ???? ???? ???? ???? ??0? ???? ???? ????
X2: ???? ???? ???? ???? ??0? ???? ???? ????
X3: ???? ???? ???? ???? ??0? ???? ???? ????

S3

X0: ??00 ???? ???? ???? ??0? ???? ???? ?0?0
X1: ???? ???? ???? ???? ??0? ???? ???? ????
X2: ???? ???? ???? ??0? ??0? ?0?? ???? ????
X3: ???? ???? ???? ???? ??0? ???? ???? ????

LT

X0: 0??? ?0?? ???0 ?0?0 000? ?00? ?0?? 0???
X1: 0??? ?0?? ???0 ?0?0 000? ?00? ?0?? 0???
X2: 0??? ?0?? ???0 ?0?0 000? ?00? ?0?? 0???
X3: 0??? ?0?? ???0 ?0?0 000? ?00? ?0?? 0???

S4

X0: 0000 ?00? ?0?0 00?0 000? ?00? 0000 0000
X1: 0??? ?0?? 0??0 0000 0000 ?00? ?0?? 0???
X2: 0??0 ?0?? 0??0 ?000 0000 000? 00?? 0??0
X3: 0??? ?0?? ??00 00?0 0000 ?00? ?0?? 00??

LT

X0: 0??0 0?00 0000 0000 00?0 0??0 ?000 ?000
X1: 0?00 00?0 0000 0000 0000 0000 0000 0000
X2: 0??0 ??00 ??0? 0??0 ??0? 0000 0000 00?0
X3: 0?00 000? 0000 0000 0000 000? 00?? 0000
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L0 ∈ {3x, 5x, 6x, Bx, Dx, Ex}
L3 ∈ {2x, 4x, 7x, 9x, Ax, Cx}
L6 ∈ {1x, 3x, 6x, 8x, Cx, Ex, Fx}
L7 ∈ {3x, 6x, 7x, 9x, Bx, Cx}
L20 ∈ {3x, 5x, 6x, Bx, Dx, Ex}
L23 ∈ {3x, 6x, Ax, Bx, Cx, Dx, Fx}

By using this set it is possible to obtain 227 ·34 ·72 pairs where the corresponding
bitslices have the desired difference. Hence, we gather a total of N = 2n+27 ·34 ·
72 plaintext pairs.

2. Request all ciphertexts and select only the ones where the ciphertext pairs having
zero difference at bitslices b0, b2, b6, b11, b16, b19, b21, b28, b31. Since there is a
36-bit filtering condition, 2n−9 · 34 · 72 pairs remain.

3. Guess 24 bits of the subkey that correspond to the bitslices b0, b3, b6, b7, b20
and b23 before feeding the input to S7. Partially encrypt every plaintext pair
and eliminate all the pairs except the ones that have differences b0 = 0100,
b3 = 1110, b6 = 1010, b7 = 0001, b20 = 0010, b23 = 1000. Hence, 2n−13 pairs
remain.

4. Guess 88 bits of the subkey that correspond to the bitslices b1, b3−5, b7−10, b12−15,
b17−18, b20, b22−27, b29 before feeding the output to S5. Partially decrypt every
ciphertext pair and increase the counter of the subkey when the pairs have the
difference shown in Table 7.2. There are 64-bit filtering conditions and hence
2n−77 pairs remain.

The attack is on 112 bits of the subkey and we expect pfa · 2112 many subkeys to get
hits less than or equivalent to threshold T . The probability of satisfying the improbable
differential for a wrong subkey is

p = 2−104 · 3−4 · 7−2 ≈ 2−117.95

and we have p′ = 2−4. To capture exactly the 112 bits of the subkey with a success
probability of 99.9%, we select pnd = 0.001 and pfa = 2−113 as the input of the
Algorithm 4.1 and we obtain N = 2131.80 and T = 55914 ≤ 216. Thus, the data
complexity of the attack is

2131.80 · 2−3 · 3−4 · 7−2 ≈ 2116.85

chosen plaintexts and memory complexity is about 2112 16-bit counters. During the
subkey guess steps, we can guess 4 bits at a time and eliminate wrong pairs by checking
the result of the corresponding S-box operations. Thus, the time complexity of Step 2
is

6 · 1

7

1

16
· 2 · 24 · 295.79 ≈ 296.57

7-round SERPENT encryptions. Similarly, time complexity of Step 3 is 2117.57 7-round
SERPENT encryptions.

67



Table 7.2: A 7-Round Improbable Differential Attack

Input

X0: 0000 0000 ?00? 0000 0000 0000 ??00 ?00?
X1: 0000 0000 ?00? 0000 0000 0000 ??00 ?00?
X2: 0000 0000 ?00? 0000 0000 0000 ??00 ?00?
X3: 0000 0000 ?00? 0000 0000 0000 ??00 ?00?

S7

X0: 0000 0000 0000 0000 0000 0000 1000 0000
X1: 0000 0000 0001 0000 0000 0000 0100 1000
X2: 0000 0000 0000 0000 0000 0000 0000 1001
X3: 0000 0000 1000 0000 0000 0000 0100 1000

LT

X0: 0000 0010 0000 0000 0000 0000 0000 0000

←
−−
−−
−−
−−

p′ = 2−4

X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0001 0010 0000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S0

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0001 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0010 0000 0000 0000 0000 0000 0000
X3: 0001 0000 0000 0000 0000 0000 0000 0000

4.5-Round Impossible Differential

LT

X0: 0??0 0?00 0000 0000 00?0 0??0 ?000 ?000
X1: 0?00 00?0 0000 0000 0000 0000 0000 0000
X2: 0??0 ??00 ??0? 0??0 ??0? 0000 0000 00?0
X3: 0?00 000? 0000 0000 0000 000? 00?? 0000

S5

X0: 0??0 ???? ??0? 0??0 ???? 0??? ?0?? ?0?0
X1: 0??0 ???? ??0? 0??0 ???? 0??? ?0?? ?0?0
X2: 0??0 ???? ??0? 0??0 ???? 0??? ?0?? ?0?0
X3: 0??0 ???? ??0? 0??0 ???? 0??? ?0?? ?0?0

7.2 Improved Differential-Linear Attacks on SERPENT

In [11] a differential-linear attack on 11-round SERPENT-192 and SERPENT-256 is
presented. The attack combines the 3-round differential

∆ : 00000000000000000000000040050000→ 0??00?000?000000000?00?0??0??0?0

that has a probability of p = 2−7 with the 6-round linear approximation

Λ : 20060040000001001000000000000000→ 00001000000000005000010000100001

of [7] that has bias q = 2−27.

The first attack on 10-round SERPENT-128 is also presented in [11] which is obtained
by removing the last round of this linear approximation. The data and time complexi-
ties of these attacks are reduced in [35] by using the following improvements:

1. Better analysis of the bias of the differential-linear approximation,
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2. Better analysis of the success probability,

3. Changing the output mask.

Moreover in [35], these reduced complexities are used to extend the 11-round attack
and obtain the first 12-round attack on SERPENT-256. In this section we further im-
prove these differential-linear attacks by using the differential factors of SERPENT’s
S-boxes S0 and S1.

7.2.1 Differential Factors of SERPENT

Table 7.3: Differential Factors of SERPENT’s S-boxes

Differential Output
S-box Factor Difference
S0 4x 4x
S0 Dx Fx
S1 4x 4x
S1 Fx Ex
S2 2x 1x
S2 4x Dx

S6 6x 2x
S6 Fx Fx

The differential-linear attacks of [11, 35] start at round 1 and the 3-round differential
activates 5 S-boxes in this round. Two of the output differences of these activated
S-boxes are 4x and Ex which have differential factors as shown in Table 3.3. The
authors guess every possible 20 subkey bits corresponding to these five S-boxes but
the attacker can only obtain 18-bit advantage for this subkey due to Theorem 3.3 and
there is no need to try half of the subkeys corresponding to these two S-boxes having
differential factors. Thus, the advantage of the differential-linear attacks on 10, 11, and
12 rounds of SERPENT are actually 38, 46, and 158 bits instead of 40, 48, and 160 bits,
respectively. And again by Theorem 3.3, the same attacks can be performed with time
complexities reduced by a factor of 4.

Moreover, the 12-round attack of [35] adds one more round to the top of the differential
which affects every S-box at round 0 except the S-boxes 2, 3, 19, and 23 and guesses
the 112 bits of the subkey corresponding to these active S-boxes. However, by using
the undisturbed bits of SERPENT, we observed that the output difference of the S-box 8
is exactly 4x. Since µ = 4x also has a differential factor for S0, the attacker’s advantage
reduces to 157 bits and the time complexity of the attack further reduces by a factor
of 2. Table 7.4 summarizes this 12-round attack and highlights the differential factors
and the undisturbed bits that are used to reduce the time complexity.

We also observed that by replacing the 3-round differential with a more probable one,
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Table 7.4: 12-round differential-linear attack of [35]. Output differences µ that contain
differential factors, which are 4x and Ex for S1 and 4x for S0, are shown in bold.
Undisturbed bits are shown in italic.

Input

X0: ???? ???? 0??? 0??? ???? ???? ???? 00??
X1: ???? ???? 0??? 0??? ???? ???? ???? 00??
X2: ???? ???? 0??? 0??? ???? ???1 ???? 00??
X3: ???? ???? 0??? 0??? ???? ???? ???? 00??

S0

X0: ??0? 00?0 0000 0?00 00?0 0000 00?? 00??
X1: ??0? ???? 00?0 0??? 0??? ???0 0?00 0000
X2: 000? 00?? 0??0 0?00 ??00 ?001 0?00 0000
X3: ?0?? ?0?? 00?? 0??? ??0? 0??0 ?001 0000

LT

X0: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X1: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X2: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X3: ?000 0000 0000 01?0 0?00 1000 0000 0000

S1

X0: 0000 0000 0000 0100 0000 0000 0000 0000
X1: 1000 0000 0000 0010 0100 0000 0000 0000
X2: 0000 0000 0000 0000 0100 1000 0000 0000
X3: 0000 0000 0000 0010 0100 0000 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0001 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0000 0000 0000 1001 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

9-Round Differential-Linear Characteristic ∆ ◦ Λ
Last Round

we can perform these attacks with less data complexity and capture four more subkey
bits with a time complexity increased by a factor of 23.35. These modified attacks are
provided in the following Section 7.2.2.

7.2.2 3-Round Differentials with Higher Probability

The rounds of the 3-round differential used in the differential-linear attacks of [11, 35]
have probabilities 2−5, 2−1, and 1 but the authors observed experimentally that this
differential has probability 2−7 instead of 2−6. We observed that there are 3-round
differentials of SERPENT with probability 2−5 that can be combined with the same
linear approximations. The rounds of these differential have probabilities 2−5, 1, and
1 and for this reason, the theoretical and practical probabilities of these differentials
are the same. These differentials activate six S-boxes at the first round of the attack
instead of five. So replacing the original differential with these result in capturing 4

70



more subkey bits but time complexity of the attacks also increase by a factor of 24.

Since the data complexity of a differential-linear attack is of O(p−2q−4) and replacing
the differential result in p = 2−5 instead of 2−7, one would expect the modified attacks
to have data and time complexities reduced by a factor of 24. However, experiment
results show that the gain in the modified attacks is at most a factor of (2−0.32)2. This
is because the transition between the original differential and the linear approxima-
tion is far better than expected. For instance, when the original 3-round differential is
combined with a 1-round linear approximation of bias 2−5, Dunkelman et al. exper-
imentally verified that the 4-round differential-linear path has bias 2−13.75, instead of
2 · 2−7 · (2−5)2 = 2−16. We performed similar experiments on five different 3-round
differential with probability 2−5 using 234 pairs and the results are summarized in Table
7.5.

Table 7.5: 4-Round Biases for 3-Round Differentials with Probability 2−5 and 1-round
Linear Approximation with Bias 2−5

Input Difference #Active Standard
# X0 X1 X2 X3 (in Hexadecimal) S-boxes Bias Deviation
1 40000000 00000000 40000002 00000000 6 2−13,49 2−18.03

2 00000000 40000000 40000002 00000000 6 2−13,43 2−18.11

3 00000000 40000000 00000002 40000000 6 2−13,56 2−18.07

4 00000000 40000000 40000002 00000002 6 2−13,43 2−18.19

5 00000002 00000000 00000012 00000000 6 2−14,65 2−18.00

We replace the original differential with the second one from Table 7.5 and obtain
new 10, and 11 round differential-linear attacks. This change provides a 4-round bias
of 2−13,43 instead of 2−13.75. Thus the data and time complexity gain in the modified
attack is a factor of (2−0.32)2. This differential activates six S-boxes instead of five so
we capture four more subkey bits and the time complexity is multiplied by 24. One
of the output differences of these activated S-boxes is again 4x and thus we have one
differential factor. Since the rest of our improved attacks are almost identical to the
attacks of [35], we refer the interested reader to [35]. We summarize the complexities
of the attacks on SERPENT in Table 7.6.
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Table 7.6: Summary of attacks on SERPENT. Note that it is claimed in [54] that the
multidimensional linear attacks of [56] may not work as claimed depending on the
linear hull effect. If the claims are correct, then our use of differential factors in the
attacks of [35] becomes the best attacks for this cipher.

#Rounds Attack Type Key Size Data Time Memory Advantage Success Reference
6 Meet-in-the-middle 256 512 KP 2247 En 2246 B - - [45]
6 Differential All 283 CP 290 En 240 B - - [45]
6 Differential All 271 CP 2103 En 275 B - - [45]
6 Differential 192, 256 241 CP 2163 En 245 B 124 - [45]
7 Differential 256 2122 CP 2248 En 2126 B 128 - [45]
7 Improbable All 2116.85 CP 2117.57 En 2113 B 112 99.9% Sect. 7.1
7 Differential All 284 CP 285 MA 256 B - - [8]

10 Rectangle 192, 256 2126.3 CP 2173.8 MA 2131.8 B 80 - [10]
10 Boomerang 192, 256 2126.3 AC 2173.8 MA 289 B 80 - [10]
10 Differential-Linear All 2101.2 CP 2115.2 En 240 B 40 84% [35]
10 Differential-Linear All 2101.2 CP 2113.2 En 240 B 38 84% Sect. 7.2.1
10 Differential-Linear All 2100.55 CP 2116.55 En 240 B 42 84% Sect. 7.2.2
11 Linear 256 2118 KP 2214 MA 285 B 140 78.5% [7]
11 Multidimensional Linear 1 All 2116 KP 2107.5 En 2108 B 48 78.5% [56]
11 Multidimensional Linear 2 All 2118 KP 2109.5 En 2104 B 44 78.5% [56]
11 Nonlinear 192, 256 2120.36 KP 2139.63 MA 2133.17 B 118 78.5% [54]
11 Filtered Nonlinear 192, 256 2114.55 KP 2155.76 MA 2146.59 B 132 78.5% [54]
11 Differential-Linear 192, 256 2121.8 CP 2135.7 MA 276 B 48 84% [35]
11 Differential-Linear 192, 256 2121.8 CP 2133.7 MA 276 B 46 84% Sect. 7.2.1
11 Differential-Linear 192, 256 2121.15 CP 2137.05 MA 276 B 50 84% Sect. 7.2.2
12 Multidimensional Linear 3 256 2116 KP 2237.5 En 2125 B 174 78.5% [56]
12 Differential-Linear 256 2123.5 CP 2249.4 En 2128.5 B 160 84% [35]
12 Differential-Linear 256 2123.5 CP 2246.4 En 2128.5 B 157 84% Sect. 7.2.1

1 In [54], it is claimed that the correct data complexity of this attack is 2125.81 KP and the time complexity is
2101.44 En +2114.13 MA.

2 In [54], it is claimed that the correct data complexity of this attack is 2127.78 KP and the time complexity is
297.41 En +2110.10 MA.

3 In [54], it is claimed that the correct data complexity of this attack is ≥ 2125.81 KP and the time complexity
is 2229.44 En +2242.13 MA.

72



Table 7.7: 11-Round differential-linear attack with a 3-round differential of probability
2−5. Output differences µ = 4x and µ = Ex that contain differential factors for S1 are
shown in bold. Undisturbed bits are shown in italic.

Input

X0: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X1: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X2: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X3: 0??0 0000 0000 0010 0000 ?00? 0010 0000

S1

X0: 0000 0000 0000 0010 0000 0000 0000 0000
X1: 0110 0000 0000 0000 0000 1001 0000 0000
X2: 0000 0000 0000 0000 0000 0001 0010 0000
X3: 0000 0000 0000 0000 0000 1001 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000

←
−−
−−
−−
−−

p = 2−5

X1: 0100 0000 0000 0000 0000 0000 0000 0000
X2: 0100 0000 0000 0000 0000 0000 0000 0010
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S2

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0010
X2: 0100 0000 0000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0010

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 1000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S3

X0: 0000 0000 ?000 0000 0000 0000 0000 0000
X1: 0000 0000 ?000 0000 0000 0000 0000 0000
X2: 0000 0000 ?000 0000 0000 0000 0000 0000
X3: 0000 0000 ?000 0000 0000 0000 0000 0000

LT

X0: 00?0 0000 0000 ?000 0000 0??0 0?00 ?00?
X1: 0000 ?00? 0000 0000 0000 0000 00?0 0000
X2: 0000 0000 ?0?? 000? 0000 0000 000? 0?00
X3: 0?00 0000 0000 0000 0?00 0000 0000 00?0

S4

X0: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X1: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X2: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X3: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????

6-Round Linear Approximation Λ
Last Round
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[66] A. A. Selçuk, On probability of success in linear and differential cryptanalysis, J.
Cryptology, 21(1), pp. 131–147, 2008.

[67] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, Pic-
colo: An ultra-lightweight blockcipher, in Preneel and Takagi [62], pp. 342–357.

[68] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, The 128-bit blockci-
pher CLEFIA (extended abstract), in Biryukov [15], pp. 181–195.

[69] Sony Corporation, The 128-bit Blockcipher CLEFIA, Security and Performance
Evaluations, Revision 1.0, June 1 (2007),
http://www.sony.net/Products/cryptography/clefia/.

[70] A. Sorkin, LUCIFER, a cryptographic algorithm, j-CRYPTOLOGIA, 8(1), pp.
22–42, January 1984, ISSN 0161-1194 (print), 1558-1586 (electronic), see also
erratum, Cryptologia 7, 1978, p. 118.

[71] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater, Sea: A scalable
encryption algorithm for small embedded applications, in J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, CARDIS, volume 3928 of Lecture Notes
in Computer Science, pp. 222–236, Springer, 2006, ISBN 3-540-33311-8.

[72] S. Sun, L. Hu, and P. Wang, Automatic security evaluation for bit-oriented block
ciphers in related-key model: Application to present-80, lblock and others, IACR
Cryptology ePrint Archive, 2013, p. 676, 2013.

[73] X. Tang, B. Sun, R. Li, and C. Li, Impossible differential cryptanalysis of 13-
round CLEFIA-128, Journal of Systems and Software, 84(7), pp. 1191–1196,
2011.

[74] C. Tezcan, The improbable differential attack: Cryptanalysis of reduced round
CLEFIA, in G. Gong and K. C. Gupta, editors, INDOCRYPT, volume 6498 of
Lecture Notes in Computer Science, pp. 197–209, Springer, 2010, ISBN 978-3-
642-17400-1.

[75] C. Tezcan, Improbable differential attack on PRESENT using undisturbed bits,
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