
Incentivizing Collaboration in
Privacy-preserving Mechanisms Using Scrip

System - Simulation

Cihangir Tezcan
Tutors: Mathias Humbert and Dr. Mohammad Hossein Manshaei

Instructor: Prof. Jean-Pierre Hubaux

École Polytechnique Fédérale de Lausanne
January 11, 2011

1 Introduction

Novel mobile systems, such as location-based services, mobile social net-
works or participatory sensing, leverage on increasing capabilities in com-
putation, communication, storage and sensing of mobile devices, as well as
location awareness (GPS), in order to provide mobile users with services
or other kinds of rewards. In order to benefit from these, mobile users are
required to share location information and sensitive data with a central
server or other peers. This leads to many issues, among which privacy
is one of the most critical. In [1], the authors propose a new privacy-
preserving system for data aggregation in participatory sensing, based on
data slicing and mixing. However, this scheme induces a communication
overhead (and thus more energy consumption) to users collaborating in
the privacy-preserving mechanism. As battery is a critical resource in all
mobile devices, self-interested users may not be willing to cooperate and
even free-ride (i.e., benefit from the system without paying its costs).
In order to prevent free-riding in P2P networks, some researchers have
proposed to make use of virtual currency, called scrip [2, 3].

In this mini-project, we would like to adapt scrip system to the privacy-
preserving scheme proposed in [1] for participatory sensing. The amount
of money (scrip) deployed in the system has been shown to have great im-
pact on the efficiency of P2P networks. The distribution of money among
the nodes is also a crucial point that must be taken into account. In order
to solve these problems, we would like to implement a simulation infras-
tructure and observe the changes in the system by running simulations.
In this study, we used the C programming language to implement our
simulation infrastructure and used the command-line program gnuplot
[4] to plot graphs of the simulation data.



This report is organized as follows: In Section 2, we define the variables
and functions of the simulation, discuss parameter selection and plotting
simulation data with gnuplot. Simulation results are provided in Section
3. In Section 4, we conclude our report with a summary and a future work.
Note that the C codes of our simulation are provided in the Appendices.

2 Simulation Infrastructure

2.1 Our Model

We define our scrip system with nnodes many nodes which is similar to
the scrip system defined in [3]. Main difference between these systems is
that, in [3] a service is provided to a node by another node. However,
in our model, nodes slice each piece of their data into slices + 1 smaller
pieces of equal size. They keep one piece to themselves and to preserve
their privacy, they send remaining slices many pieces to their neighbours,
which are called cover nodes (We assume that the cover nodes aggregate
all received slices and send the result to the aggregation server). Hence,
the system of [3] can be seen as 1-1 and our system can be seen as 1-n.

We assume that nodes have type t and define a type by a tuple
t=(αt,βt,γt,δt,ρt) as in [3] where

– αt is the cost of satisfying a request,
– βt is the probability that a node can satisfy the request of another

node,
– γt is the utility a node gains for having a request satisfied,
– δt is the rate at which a node discounts utility,
– ρt is the relative request rate.

When a service is performed by slices many cover nodes for a re-
quester node, cover nodes lose α utility depending on their type and each
of them gain 1 scrip. On the other hand, requester node gains γ utility
and loses slices many scrips.

Our simulation runs until n transactions many successful transac-
tions occur. In each round, a node is selected depending on ρ values of
the nodes. If the scrip amount of the selected node is less than slices,
it cannot request a service. Otherwise, it randomly selects a neighbour
and asks for transmission. If it can find slices many cover nodes that are
willing to perform the service, then the data transmission occurs and the
requester node sends 1 scrip to every cover node.

In [3], total expected social welfare for a homogeneous population (i.e.
each node is of type t for a fixed t) is defined as (1−M0)(γt−αt)/(1− δt)

2



where M0 is the fraction of nodes that has 0 scrip. We define the total
expected social welfare in our system in a similar way. Let γavg, αavg, δavg
be the weighted average of the γ, α, δ values of all types and let Mbrokes

represent the fraction of nodes whose scrip amount is less than slices.
When a request is satisfied, the social welfare increases by γavg − slices ·
αavg in average. If we assume that there are always enough cover nodes
to perform the service, in each round the expected increase in the social
welfare is (1−Mbrokes)(γavg−slices·αavg). Thus, the total expected social
welfare summed over all rounds is (1−Mbrokes)(γavg − slices ·αavg)/(1−
δavg) where δavg is the average discount factor.

Our simulation software consists of two files: ‘scrip.c’ and ‘scrip.h’.
Variables and main functions are defined in ‘scrip.c’ file and functions for
printing results on the screen or to a file is defined in ‘scrip.h’ file. We
used the C programming language for these codes and they are provided
in the Appendices.

2.2 Parameters

In order to start the simulation, the user is asked to input parameters in
the following order:

1. Number of nodes
2. Length of the x-coordinate
3. Length of the y-coordinate
4. Coverage radius of a node
5. Number of slices
6. Average amount of money
7. Number of transactions
8. Output frequency
9. Number of types

(a) Ratio
(b) Threshold
(c) Alpha (Cost of satisfying a request)
(d) Beta (Probability of satisfying a request)
(e) Gamma (Utility the agent gains)
(f) Delta (Rate at which an agent discounts utility)
(g) Rho (Relative request rate)

Users should take into account following properties when entering
parameters:

1. The number of nodes in the system is upper bounded by 10, 000 (How-
ever, this upper bound can be changed by editing ‘scrip.c’ file).

3



2. For the input values of the lengths of the coordinates x and y, nodes
are randomly placed in the XY-plane where the x-coordinate of a node
is in [0, x) and y-coordinate is in [0, y). Two nodes cannot be placed
at the same position. Therefore, depending on the number of nodes
in the simulation, the values x and y should be chosen big enough.

3. Nodes can communicate only with the nodes that are inside their cov-
erage radius. Such nodes are called neighbours. Note that the current
version of the simulation does not allow h-hop data transfer and the
simulation does not start if there exists a node that has no neighbours.
To allow every node to hear each other, the user can simply enter ‘0’
as the coverage radius.

4. For the input average amount of money m, half of the nodes initially
has bm2 c scrips each and the remaining half has m+ bm2 c scrips each.
This property is also true for each type of nodes. For instance, if there
are 20 nodes of Type 1 and 80 nodes of Type 2 in the system with
average money 8, then 10 nodes of Type 1 and 40 nodes of Type 2
have 4 initial scrips and the remaining nodes have 12 initial scrips.

5. If a node has less scrips than the number of slices, then it cannot
transmit data. Hence, the choice of the number of slices should be
made according to average amount of money. Note that if the number
of slices is higher than m+bm2 c, no one can transmit data and system
crashes.

6. Simulation runs until the number of successful data transmissions
equals to the user’s input value of number of transactions. We are
interested in the fraction of nodes having i scrips at the end of the
simulation and after some point, we expect to see these values to con-
verge to a limit value. Hence, number of transactions should be big
enough.

7. The scrip data of the simulation are recorded to ‘scrips.txt’ and ‘so-
cial welfare.txt’ file once when outputfrequency many transactions
are done. Note that writing simulation data to the hard drive too fre-
quently may increase the running time of the simulation dramatically.

8. Sum of the ratios of the types must be equal to 1.

9. Beta values must be real values in [0, 1] since they are probabilities.

10. Rho values should be normalized to integer values.

An example of user input is provided in Figure 1.

4



Fig. 1: Example inputs

2.3 Variables

Integer Valued Variables: The following integer valued global vari-
ables are used in the simulation:

x : Length of the x-coordinate where nodes can be placed. Hence, X-
coordinate of a node is in the range [0, x).

y : Length of the y-coordinate where nodes can be placed. Hence, Y-
coordinate of a node is in the range [0, y).

distance: The coverage radius of a node.

number nodes: Maximum number of nodes that can be used in the
simulation. Default value is 10, 000. This upper bound can be changed
only by updating the ‘scrip.c’ file. Note that there can be at most x ∗ y
many nodes in the simulation.

5



max types: Maximum number of node types that can be used in the
simulation. Default value is 100. This upper bound can be changed only
by updating the ‘scrip.c’ file.

max slices: Maximum number of slices that a data package contains.
Default value is 100. This upper bound can be changed only by updating
the ‘scrip.c’ file.

nodes()(): The coordinates of the nodes in the XY-plane are stored
in this array. For instance, the coordinates of the node N5 are (X,Y ) =
(nodes(5)(0), nodes(5)(1)).

neighbours()(): Neighbours of every node are stored in this array. For
instance, the 2nd neighbour of N6 is neighbours(6)(1).

n neighbours(): Number of neighbours of a node. For example, N6
has n neighbours(6) neighbours.

scrip(): Number of scrips of a node. For example, N6 has scrip(6)
many scrips.

n transactions: Number of successful data transmission.

history(): Keeps a track of the nodes to which a slice of data is sent
in order to avoid sending more than 1 slice to the same cover node.

available nodes: Number of neighbours that are not contacted yet.

minimum n neighbours: The minimum value of the number of neigh-
bours (i.e. minn neighbours(i) where i ∈ [0, nnodes)). If there exists a
node that has no neighbours (i.e. minimum n neighbours=0), then the
simulation does not start.

total rejections: Number of rejected transmissions

n brokes: Number of nodes whose scrip is less than the value of slices.
In other words, this is the number of nodes that does not have enough
scrip to transmit data.

6



outputs: This counter is increased when the scrip data is recorded to
a file. Hence, it shows the amount of data that is stored.

slices: Number of slices a package contains.

acknowledged(): Cover nodes that agree to transmit a data slice is kept
in this array. For example, 0th slice will be transmitted to acknowledged(0).

randomization(): In each round, a node is selected with probability
proportional to rho. This array keeps the list of nodes for random selec-
tion.

modulo: When determining the node to send data, random num-
bers are generated modulo this number. (i.e. rand()%modulo) See pre-
pare table random selection function for more information.

n rich: Number of nodes that have scrips higher than or equal to their
thresholds.

tthreshold(): Represents the threshold of each type.

nnodes: Number of nodes.

m: Average amount of money.

types: Number of types.

transaction: Number of transactions required to complete the simula-
tion.

output frequency: Frequency of recording the scrip data to the output
file. Hence, scrip data is recorded b transaction

output frequency c many times.

ntype(): Type of each node.

Real Valued Variables: The following real valued global variables are
used in the simulation:

ratio(): Ratio of each type.

7



alpha(): Cost of satisfying a slice transmission request of each type.

beta(): Probability that a node acknowledges a slice transmission re-
quest. This value is defined for each type.

gamma(): Amount of utility that a node gains for having a request
satisfied. This value is defined for each type.

delta(): Utility discount rate of a node. This value is defined for each
type.

rho(): Relative data submission rate. This value is defined for each
type.

average gamma: Weighted average of gamma values of each type. This
value is used when calculating social welfare.

average alpha: Weighted average of alpha values of each type. This
value is used when calculating social welfare.

average delta: Weighted average of delta values of each type. This
value is used when calculating social welfare.

2.4 Functions

scrip.c File: Following functions are defined in ‘scrip.c’ file:

define nodes: This function puts nnodes many nodes on the XY-plane.
The coordinates of the nodes are randomly generated.

prepare variables: Initializes some variables.

detect neighbours: Every node detects other nodes which are inside
the coverage radius. The neighbours() array keeps this list of detected
nodes.

check consistency: This function checks the user’s input for errors.
Simulation does not start if there are any error. It reports an error if

1. beta(i) /∈ [0, 1] for some i ∈ [0, types),

8



2. ratio(i) /∈ [0, 1] for some i ∈ [0, types),

3.

types∑
i=0

ratio[i] 6= 1,

4. nnodes > x ∗ y.

distribute money: This function distributes initial scrips to nodes de-
pending on the average scrip amount m. Note that half of the nodes has
bm2 c scrips and the remaining half has m+ bm2 c scrips.

volunteers: Returns the number of nodes that are not contacted yet
for slice transmission acknowledgment.

send data: This function is called when a data package is sent. Hence,
it increases the scrip amount of the slices many cover nodes which ac-
knowledged the transmission. Moreover, the requester node loses slices
many scrips. This function is called inside the exchange data function
if the requester finds slices many cover nodes that acknowledges data
transmission.

acknowledge transmission: With this function the requester node tries
to find slices many cover nodes that acknowledges data transmission.

exchange data: First, it selects a node to request data transmission
randomly (depending on the data submission rate rho of the nodes).
Then checks if there are slices many cover nodes that acknowledges data
transmission, using acknowledge transmission function. If so, the data
transmission and exchange of scrips is performed by calling the send data
function.

prepare table random selection: In each round, a node is selected to re-
quest data transmission and the selection depends on the data submission
rate of the nodes. This function creates a list of the nodes randomization()
for this selection. For example, if node N0 has rho = 1, then it appears
only once in this list and if N1 has rho = 6, it appears 6 times in the
list. Hence, the probability of selection of N1 is 6 times the probability of
selection of N0.

calculate brokes: Calculates the number of nodes whose scrip is less
than slices and records this number to n brokes variable. It also calcu-
lates the number of nodes whose scrip equals to its tthreshold and records

9



this number to n rich variable.

input parameters: Asks the user to input parameters of the simulation.
The parameters are asked in the following order: nnodes, x, y, distance,
slices, m, transaction, output frequency, types.

And for each type, following parameters are asked: ratio, tthreshold,
alpha, beta, gamma, delta, rho.

main: This is the main function that runs the simulation. First, it
seeds the pseudo random number generating function with the current
time in order to have different random numbers in each simulation. Sec-
ond, it asks the user to input parameters using input parameters func-
tion. The validity of the input parameters are checked with the check
consistency function. Then, prepare variables function is called to ini-

tialize some values and define nodes function is called to generate nodes.
Generated nodes recognize their neighbours with detect neighbours func-
tion. The initial scrips are distributed with the distribute money function
and it is recorded to ‘scrips.txt’ file using record scrips function. The list
for randomly selecting nodes that want to transmit data is generated
with the prepare table random selection. For transaction many rounds,
exchange data function is called to perform the simulation.

scrip.h File Following functions are defined in ‘scrip.h’ file:

print scrip: Prints the scrip amount of each node on the screen.

print n neighbours: Prints the number of neighbours of each node and
the minimum number of neighbours on the screen.

print neighbours: Prints the neighbours of each node on the screen.

print nodes: Prints the positions of each node on the XY-plane on the
screen.

fprint nodes: Prints the positions of each node on the XY-plane on
the file ‘nodes.txt’. Moreover, it records gnuplot instructions for plot-
ting the positions of the nodes and their coverage on the XY-plane to
‘gnu nodes.txt’

10



record scrips: Records the number of nodes that has i scrips for any
i ≥ 0 to the ‘scrips.txt’ file.

record social welfare: Records the social welfare to the ‘social welfare.txt’
file where social welfare is calculated as

(1− n brokes
nnodes ) · (average gamma− slices · average alpha)

(1− average delta)
.

fprint parameters: Records the user input parameters to ‘parame-
ters.txt’ file.

2.5 Graphs with gnuplot

Scrip data of the simulation is recorded to the output file ‘scrip.txt’ for
b transaction
output frequency c many times and each time they are recorded as a differ-

ent data set. We use gnuplot software to plot these graphs. First, we write
the instructions for plotting the graphs to a file named ‘gnu scrips.txt’.
For example, the following instructions can be used to plot first 5 data
sets:

set term pdf size 3.00in, 3.00in

set pointsize 0.5

set xrange[0:55]

set yrange[0:1010]

set xlabel ’Number of scrips’

set ylabel ’Number of nodes’

set style line 1 lt 1 lw 5

set title ’Scrip Distribution at Time slot:0

set output ’scrips000.pdf’

plot ’scrips.txt’ index 0:0 using 1:2 ti ’’ with imp ls 1

set yrange[0:200]

set title ’Scrip Distribution at Time slot:1

set output ’scrips001.pdf’

plot ’scrips.txt’ index 1:1 using 1:2 ti ’’ with imp ls 1

set title ’Scrip Distribution at Time slot:2

set output ’scrips002.pdf’

plot ’scrips.txt’ index 2:2 using 1:2 ti ’’ with imp ls 1

set title ’Scrip Distribution at Time slot:3

set output ’scrips003.pdf’

11



plot ’scrips.txt’ index 3:3 using 1:2 ti ’’ with imp ls 1

set title ’Scrip Distribution at Time slot:4

set output ’scrips004.pdf’

plot ’scrips.txt’ index 4:4 using 1:2 ti ’’ with imp ls 1

set title ’Scrip Distribution at Time slot:5

Once the ‘scrip.txt’ and the ‘gnu scrips.txt’ are in the same folder
with the ‘gnuplot.exe’ (which is generally <installation folder>/binary)
we call the gnuplot with the following command:

gnuplot.exe "gnu_scrips.txt"

Note that these example instructions that we defined above plots the
first 5 data sets to 5 different PDF files. The index command is used
to specify which data set we want to use for plotting the graph. The
set xrange[0:55] command defines the length of the x-coordinate in the
graph and this value should be changed according to the thresholds of the
types. Similarly, the set yrange[0:200] command defines the length of the
y-coordinate in the graph and this value should be changed according to
the total amount of scrips in the system.

3 Results

3.1 Scrip Distribution

We are interested in the distribution of money after the simulation is run
long enough and we also would like to see the effect of the number of
slices on this distribution. Figures 2, 3, 4, and 5 show the distribution of
money after 1, 000, 000 successful transactions where number of slices are
chosen as 1, 2, 3, and 4, respectively. The remaining parameters are fixed
for all of the four figures and they are chosen as follows:

Number of nodes: 1000

Length of the x-coordinate: 200

Length of the y-coordinate: 200

Coverage radius of a node: 0

Average amount of money: 10

Number of transactions: 1000000

Output frequency: 10000

Types: 2

(Type 1)

12



Ratio: 0.3

Threshold: 50

Alpha: 0.05

Beta: 1

Gamma: 1

Delta: 0.95

Rho:1

(Type 2)

Ratio: 0.7

Threshold: 50

Alpha: 0.15

Beta: 1

Gamma: 1

Delta: 0.95

Rho:1

 0

 50

 100

 150

 200

 0  10  20  30  40  50

N
um

be
r o

f n
od

es

Number of scrips

#types: 2, #slices: 1

Fig. 2: Scrip distribution after 1,000,000 transactions

13



 0

 50

 100

 150

 200

 0  10  20  30  40  50

N
um

be
r o

f n
od

es

Number of scrips

#types: 2, #slices: 2

Fig. 3: Scrip distribution after 1,000,000 transactions

 0

 50

 100

 150

 200

 0  10  20  30  40  50

N
um

be
r o

f n
od

es

Number of scrips

#types: 2, #slices: 3

Fig. 4: Scrip distribution after 1,000,000 transactions

14



 0

 50

 100

 150

 200

 0  10  20  30  40  50

N
um

be
r o

f n
od

es

Number of scrips

#types: 2, #slices: 4

Fig. 5: Scrip distribution after 1,000,000 transactions

3.2 Social Welfare

We are interested in the effects of thresholds, number of slices, and average
amount of money on the social welfare. Figure 6 shows that when number
of slices increases, social welfare decreases logarithmically. This simulation
is run with the following choice of parameters (with slices ranging from 1
to 10):

Number of nodes: 1000

Length of the x-coordinate: 200

Length of the y-coordinate: 200

Coverage radius of a node: 0

Average amount of money: 10

Number of transactions: 1000000

Output frequency: 10000

Types: 2

(Type 1)

Ratio: 0.3

Threshold: 30

Alpha: 0.05

Beta: 1

15



Gamma: 1

Delta: 0.95

Rho:1

(Type 2)

Ratio: 0.7

Threshold: 40

Alpha: 0.15

Beta: 1

Gamma: 1

Delta: 0.95

Rho:1

 0

 5

 10

 15

 20

 0  2  4  6  8  10

So
ci

al
 w

el
fa

re

Slices

Fig. 6: Social welfare for various amounts of slices

In Figure 7, we show the effect of average amount of money on social
welfare. This simulation is run with the following choice of parameters
(with average amount of money ranging from 2 to 18):

Number of nodes: 1000

Length of the x-coordinate: 200

Length of the y-coordinate: 200

16



Coverage radius of a node: 0

Number of slices: 1

Number of transactions: 1000000

Output frequency: 10000

Types: 1

(Type 1)

Ratio: 1

Threshold: 20

Alpha: 0.05

Beta: 1

Gamma: 1

Delta: 0.95

Rho:1

 0

 5

 10

 15

 20

 0  5  10  15  20

So
ci

al
 w

el
fa

re

Average amount of money

Fig. 7: Social welfare for various amounts of average money

In Figure 8, we show the effect of threshold on social welfare. This
simulation is run with the following choice of parameters (with threshold
ranging from 5 to 16):

Number of nodes: 1000

17



Length of the x-coordinate: 200

Length of the y-coordinate: 200

Coverage radius of a node: 0

Number of slices: 1

Average amount of money: 4

Number of transactions: 1000000

Output frequency: 10000

Types: 1

(Type 1)

Ratio: 1

Alpha: 0.05

Beta: 1

Gamma: 1

Delta: 0.95

Rho:1

 0

 5

 10

 15

 20

 4  6  8  10  12  14  16  18

So
ci

al
 w

el
fa

re

Threshold

Fig. 8: Social welfare for various amounts of thresholds

18



4 Conclusion

We would like to adapt scrip system to the privacy-preserving scheme pro-
posed in [1] for participatory sensing. For this reason, we implemented a
scrip system simulation infrastructure with many capabilities using the C
programming language and we used the gnuplot software to plot graphs
from simulation data. We provided simulation results for the money dis-
tribution and its relation with the number of slices when the system is
run for a long time. Moreover, we provided simulation results about the
effects of slices, average amount of money, and thresholds on the social
welfare.

As a future work, we would like to add new capabilities to our sim-
ulation infrastructure. In the current model, the nodes are fixed in the
XY-plane but nodes should be allowed to move since this scrip system
is proposed for mobile devices. Moreover, currently nodes can send their
slices only to their neighbours but we would like to allow h-hop slice
transfer and see the effects of h-hop on the money distribution and the
social welfare.

References

1. Shi, J., Zhang, R., Liu, Y., Zhang, Y.: PriSense: Privacy-Preserving Data Aggrega-
tion in People-Centric Urban Sensing Systems. In: Proceedings of IEEE INFOCOM
2010, IEEE (March 2010) 1–9

2. Friedman, E.J., Halpern, J.Y., Kash, I.: Efficiency and nash equilibria in a scrip
system for P2P networks. In: Proceedings of the 7th ACM conference on Electronic
commerce. EC ’06, New York, NY, USA, ACM (2006) 140–149

3. Kash, I.A., Friedman, E.J., Halpern, J.Y.: Optimizing scrip systems: efficiency,
crashes, hoarders, and altruists. In: Proceedings of the 8th ACM conference on
Electronic commerce. EC ’07, New York, NY, USA, ACM (2007) 305–315

4. Williams, T., Kelley, C.: gnuplot, http://www.gnuplot.info/

19



A scrip.c File

1 #include <s t d i o . h>
2 #include <time . h>
3 #include <s t d l i b . h>
4 #define max types 100 // Maximum number o f t ype s t ha t can be

s imu la ted
5 #define number nodes 10000 // Maximum number o f nodes t ha t can

be s imu la ted
6 #define m a x s l i c e s 100 // Maximum number o f s l i c e s t h a t a data

package conta ins
7 int d i s t ance ; // Maximum d i s t ance between the nodes ( Coverage

rad ius )
8 int x , y ; // S i z e o f the area on x−y p lane . There can be at

most x∗y nodes
9 int nodes [ number nodes ] [ 2 ] ; // Shows the coord ina t e s o f the

nodes eg : For N5 ( x , y )=(nodes [ 5 ] [ 0 ] , nodes [ 5 ] [ 1 ] )
10 int neighbours [ number nodes ] [ number nodes ] ; // eg : 2nd

ne igbour o f N6 i s ne ighbours [ 6 ] [ 1 ] .
11 int n ne ighbours [ number nodes ] ; // Number o f ne ighbours o f a

node . eg : N6 has n ne ighbours [ 6 ] ne ighbours
12 int s c r i p [ number nodes ] ; // Money o f the nodes
13 int n t r a n s a c t i o n s =0; // Number o f s u c c e s s f u l data

t ransmiss ion
14 int h i s t o r y [ number nodes ] ; // Keeps a t rack o f the nodes t ha t

the data sen t ( to avoid not to send more than 1 data to
s i n g l e node )

15 int a v a i l a b l e n o d e s ; // number o f ne ighbours t ha t are not
contac ted ye t

16 int minimum n neighbours ; // The mininum number o f ne ighbours
a node has

17 int t o t a l r e j e c t i o n s =0;
18 int n brokes ; // Number o f nodes whose s c r i p i s l e s s than

s l i c e s
19 int outputs =0; // Counter f o r the ou tpu t s
20 int s l i c e s ; // Number o f s l i c e s a package con ta ins ( f i x e d ) ( i f

changed , a l s o change the array s i z e o f ’ acknowledged ’)
21 int acknowledged [ m a x s l i c e s ] ; // Keeps note o f the nodes t ha t

agreed to r e c e i v e s l i c e
22 int randomizat ion [ 1 0 0 0 0 0 ] ; // Keeps the l i s t o f nodes f o r

random s e l e c t i o n . The array s i z e i s number nodes x
upper bound data

23 int modulo=0; // When determining the node to send data ,
random numbers are genera ted modulo t h i s number . ( i . e .
rand ()%modulo ) See ” p r e pa r e t a b l e r andom se l e c t i on ”
func t i on

24 int n r i c h ; // Number o f nodes t ha t have s c r i p s h i gher than or
equa l to t h e i r t h r e s h o l d s

20



25 double r a t i o [ max types ] , alpha [ max types ] , beta [ max types ] , gamma
[ max types ] , d e l t a [ max types ] , rho [ max types ] ;

26 int t t h r e s h o l d [ max types ] , nnodes ; // nnodes : number o f nodes ,
t t h r e s h o l d s : t h r e s h o l d o f a type

27 double average gamma , average a lpha , a v e r a g e d e l t a ;
28 int m; // average amount o f money
29 int types ; // number o f t ype s
30 int t ransac t i on , output f requency ; // Simulat ion l en g t h and

output f requency
31 int ntype [ number nodes ] ; // type o f each node
32 FILE ∗ fp ,∗ fp2 ,∗ fp3 ,∗ fp4 ,∗ fp5 ;
33 #include ” s c r i p . h”
34
35 void d e f i n e n od e s ( ) { // Radomly c r ea t e s ”nnodes” many nodes

on the x−y p lane
36 int i , j , f l a g ;
37 for ( i =0; i<nnodes ; i++) {
38 f l a g =1;
39 while ( f l a g ) {
40 f l a g =0;
41 nodes [ i ] [ 0 ] = rand ( )%x ;
42 nodes [ i ] [ 1 ] = rand ( )%y ;
43 for ( j =0; j<i −1; j++) {
44 i f ( nodes [ j ] [0 ]== nodes [ i ] [ 0 ]

&& nodes [ j ] [1 ]== nodes [ i
] [ 1 ] ) f l a g =1;

45 }
46 }
47 }
48 }
49 void p r e p a r e v a r i a b l e s ( ) { // I n i t i a l i z e s some va l u e s to zero
50 int i ;
51 for ( i =0; i<nnodes ; i++) { n ne ighbours [ i ]=0;}
52 fp3 = fopen ( ” s c r i p s . txt ” , ”w” ) ;
53 fp4 = fopen ( ” s o c i a l w e l f a r e . txt ” , ”w” ) ;
54 f c l o s e ( fp3 ) ;
55 f c l o s e ( fp4 ) ;
56 }
57 void de t e c t ne i ghbour s ( ) { // Every node r e cogn i z e s i t s

ne ighbours
58 int i , j ;
59 int temp1 , temp2 , temp3 ;
60 temp3=d i s t ance ∗ d i s t ance ;
61 for ( i =0; i<nnodes ; i++) {
62 for ( j =0; j<nnodes ; j++) {
63 i f ( j != i ) {
64 temp1=nodes [ i ] [ 0 ] − nodes [ j ] [ 0 ] ;

temp1∗=temp1 ;

21



65 temp2=nodes [ i ] [ 1 ] − nodes [ j ] [ 1 ] ;
temp2=temp2∗temp2+temp1 ;

66 i f ( temp2<=temp3 ) {
67 ne ighbours [ i ] [

n ne ighbours [ i ] ]= j
;

68 n ne ighbours [ i ]++;
69 }
70 }
71 }
72 }
73 minimum n neighbours=n ne ighbours [ 0 ] ;
74 for ( i =1; i<nnodes ; i++) i f ( minimum n neighbours>

n ne ighbours [ i ] ) minimum n neighbours=n ne ighbours
[ i ] ;

75 i f ( minimum n neighbours==0) {
76 p r i n t f ( ”There i s a node that does not have any

neighbours \n” ) ;
77 e x i t (1 ) ;
78 }
79 }
80 int ch e c k co n s i s t e ncy ( ) { // Checks i f the user ’ s input va l u e s

make sense
81 int f l a g =1, i ;
82 double t o t a l r a t i o =0;
83 average gamma=0; average a lpha =0; a v e r a g e d e l t a =0;
84 for ( i =0; i<types ; i++) {
85 i f ( beta [ i ]<0 | | beta [ i ]>1) { p r i n t f ( ”Beta

value i n c o r r e c t \n” ) ; e x i t (1 ) ;}
86 i f ( r a t i o [ i ]<0 | | r a t i o [ i ]>1) { p r i n t f ( ” Ratio

va lue i n c o r r e c t \n” ) ; e x i t (1 ) ;}
87 t o t a l r a t i o+=r a t i o [ i ] ;
88 average gamma+=gamma[ i ]∗ r a t i o [ i ] ;
89 average a lpha+=alpha [ i ]∗ r a t i o [ i ] ;
90 a v e r a g e d e l t a+=d e l t a [ i ]∗ r a t i o [ i ] ;
91 }
92 p r i n t f ( ”average gamma : %l f average a lpha : %l f

a v e r a g e d e l t a :% l f \n” , average gamma , average a lpha ,
a v e r a g e d e l t a ) ;

93 i f ( t o t a l r a t i o !=1) { p r i n t f ( ” Rat ios do not sum to 1 ,
i t i s %l f \n” , t o t a l r a t i o ) ; e x i t (1 ) ;}

94 i f ( nnodes>x∗y ) { p r i n t f ( ”X−Y plane i s too smal l f o r
t h i s many nodes\n” ) ; e x i t (1 ) ;}

95 return f l a g ;
96 }
97 void d i s t r ibute money ( ) { // Amount o f i n i t i a l s c r i p i s

d e s c r i b ed here
98 int i , j , temp1 , temp2 , min=0;
99 temp1=m/2 ;

22



100 temp2=m+m−temp1 ;
101 for ( i =0; i<types ; i++) {
102 for ( j=min ; j<min+r a t i o [ i ]∗ nnodes ; j++) {
103 ntype [ j ]= i ;
104 i f ( j%2==0) s c r i p [ j ]=temp1 ;
105 else s c r i p [ j ]=temp2 ;
106 }
107 min=j ;
108 }
109 }
110 int vo lun t e e r s ( ) {
111 int i ;
112 for ( i =0; i<nnodes ; i++) {
113 i f ( h i s t o r y [ i ]==0) return 1 ;
114 }
115 return 0 ;
116 }
117 void send data ( int r e q u e s t e r ) {// Ni sends s l i c e s to

acknowledged nodes ( Scr i p s are a l t e r e d and behav iours may
change )

118 int i ;
119 s c r i p [ r e q u e s t e r ]−= s l i c e s ;
120 for ( i =0; i<s l i c e s ; i++) s c r i p [ acknowledged [ i ] ]++;
121 n t r a n s a c t i o n s++;
122 i f ( n t r a n s a c t i o n s%output f requency==0) { r e c o r d s c r i p s

( ) ; r e c o r d s o c i a l w e l f a r e ( ) ;}
123 }
124
125 int acknowledge t ransmis s ion ( int r e q u e s t e r ) {
126 int ack=0, i , vo luntee r ;
127 double temp ;
128 for ( i =0; i<nnodes ; i++) h i s t o r y [ i ]=0;
129 h i s t o r y [ r e q u e s t e r ]=1;
130 while ( vo lun t e e r s ( ) && ack<s l i c e s ) {
131 vo luntee r=rand ( )%nnodes ;
132 i f ( s c r i p [ vo luntee r ]< t t h r e s h o l d [ ntype [

vo luntee r ] ] ) {
133 i f ( h i s t o r y [ vo luntee r ]==0) {
134 temp=rand ( ) ;
135 temp/=32768;
136 i f ( temp<=beta [ ntype [ vo luntee r

] ] ) {
137 acknowledged [ ack ]=

vo luntee r ;
138 ack++;
139 }
140 }
141 }
142 h i s t o r y [ vo luntee r ]=1;

23



143 }
144 i f ( ack==s l i c e s ) return 1 ;
145 else t o t a l r e j e c t i o n s ++;
146 return 0 ;
147 }
148 void exchange data ( ) {
149 int r eques te r , f l a g ;
150 r e q u e s t e r=rand ( )%modulo ;
151 r e q u e s t e r=randomizat ion [ r e q u e s t e r ] ;
152 i f ( s c r i p [ r e q u e s t e r ]>= s l i c e s ) {
153 f l a g=acknowledge t ransmis s ion ( r e q u e s t e r ) ;
154 i f ( f l a g ) send data ( r e q u e s t e r ) ;
155 }
156 }
157 void p r e p a r e t a b l e r a n d o m s e l e c t i o n ( ) {
158 int i , j ;
159 for ( i =0; i<nnodes ; i++) {
160 for ( j =0; j<rho [ ntype [ i ] ] ; j++) {
161 randomizat ion [ modulo]= i ;
162 modulo++;
163 }
164 }
165 }
166 void c a l c u l a t e b r o k e s ( ) {
167 int i ;
168 n brokes =0; n r i c h =0;
169 for ( i =0; i<nnodes ; i++) {
170 i f ( s c r i p [ i ]< s l i c e s ) n brokes++;
171 else i f ( s c r i p [ i ]>=t t h r e s h o l d [ ntype [ i ] ] )

n r i c h++;
172 }
173 }
174 void input parameters ( ) {
175 int i ;
176 p r i n t f ( ”Number o f nodes (maximum : 10000) : ” ) ;
177 s can f ( ”%d”,&nnodes ) ;
178 p r i n t f ( ”Length o f the x−coord ina te : ” ) ;
179 s can f ( ”%d”,&x ) ;
180 p r i n t f ( ”Length o f the y−coord ina te : ” ) ;
181 s can f ( ”%d”,&y ) ;
182 p r i n t f ( ”Coverage rad iu s o f a node ( 0 : un l imited ) : ” ) ;
183 s can f ( ”%d”,& d i s t anc e ) ;
184 i f ( d i s t anc e==0) d i s t anc e=x∗y ;
185 p r i n t f ( ”Number o f s l i c e s : ” ) ;
186 s can f ( ”%d”,& s l i c e s ) ;
187 p r i n t f ( ”Average amount o f money : ” ) ;
188 s can f ( ”%d”,&m) ;
189 p r i n t f ( ”Number o f t r a n s a c t i o n s ( d e f a u l t : 1000000) : ” ) ;
190 s can f ( ”%d”,& t r a n s a c t i o n ) ;

24



191 p r i n t f ( ”Output f requency ( d e f a u l t : 10000) : ” ) ;
192 s can f ( ”%d”,& output f requency ) ;
193 p r i n t f ( ”Number o f types : ” ) ;
194 s can f ( ”%d”,& types ) ;
195 for ( i =0; i<types ; i++) {
196 p r i n t f ( ”\n\ t (Type %d) \n” , i +1) ;
197 p r i n t f ( ” Ratio : ” ) ;
198 s can f ( ”%l f ” ,& r a t i o [ i ] ) ;
199 p r i n t f ( ” Threshold : ” ) ;
200 s can f ( ”%d”,& t t h r e s h o l d [ i ] ) ;
201 p r i n t f ( ”Alpha ( Cost o f s a t i s f y i n g a reque s t ) :

” ) ;
202 s can f ( ”%l f ” ,&alpha [ i ] ) ;
203 p r i n t f ( ”Beta ( Pr o b a b i l i t y o f s a t i s f y i n g a

reques t ) : ” ) ;
204 s can f ( ”%l f ” ,&beta [ i ] ) ;
205 p r i n t f ( ”Gamma ( U t i l i t y the agent ga ins ) : ” ) ;
206 s can f ( ”%l f ” ,&gamma[ i ] ) ;
207 p r i n t f ( ” Delta ( Rate at which an agent

d i s count s u t i l i t y ) : ” ) ;
208 s can f ( ”%l f ” ,& de l t a [ i ] ) ;
209 p r i n t f ( ”Rho ( Re la t i v e r eque s t ra t e ) : ” ) ;
210 s can f ( ”%l f ” ,&rho [ i ] ) ;
211 }
212 f p r i n t p a r a m e t e r s ( ) ;
213 }
214 void main ( ) {
215 srand ( (unsigned int ) time (NULL) ) ; // seed the PRNG with

the current time
216 input parameters ( ) ;
217 ch ec k co n s i s t en cy ( ) ;
218 p r e p a r e v a r i a b l e s ( ) ;
219 d e f i n e n o de s ( ) ;
220 de t e c t ne i ghbour s ( ) ;
221 d i s t r ibute money ( ) ;
222 r e c o r d s c r i p s ( ) ;
223 p r e p a r e t a b l e r a n d o m s e l e c t i o n ( ) ;
224 while ( n t r an sac t i on s<=t r a n s a c t i o n ) {
225 exchange data ( ) ;
226 c a l c u l a t e b r o k e s ( ) ;
227 }
228 }

25



B scrip.h File

1 void p r i n t s c r i p ( ) {
2 int i ;
3 for ( i =0; i<nnodes ; i++) {
4 p r i n t f ( ” Sc r ip o f Node %d : \ t%d\n” , i , s c r i p [ i ] ) ;
5 }
6 p r i n t f ( ”Number o f t r a n s a c t i o n s : %d\n” , n t r a n s a c t i o n s ) ;
7 p r i n t f ( ”Number o f r e j e c t i o n s : %d\n” , t o t a l r e j e c t i o n s ) ;
8 }
9 void pr in t n ne i ghbour s ( ) {

10 int i ;
11 for ( i =0; i<nnodes ; i++) p r i n t f ( ”#Neighbours o f %d : \ t%d

\n” , i , n ne ighbours [ i ] ) ;
12 p r i n t f ( ”Minimum number o f ne ighbours : %d\n” ,

minimum n neighbours ) ;
13
14 }
15 void pr in t ne i ghbour s ( ) {
16 int i , j ;
17 for ( i =0; i<nnodes ; i++) {
18 p r i n t f ( ” Neighbours o f N%d : ” , i ) ;
19 for ( j =0; j<n ne ighbours [ i ] ; j++) {
20 p r i n t f ( ”N%d ” , ne ighbours [ i ] [ j ] ) ;
21 }
22 p r i n t f ( ”\n” ) ;
23 }
24 }
25 void pr in t node s ( ) {
26 int i , j ;
27 for ( i =0; i<nnodes ; i++) {
28 p r i n t f ( ”Node %d :\ t \ t ” , i ) ;
29 for ( j =0; j <2; j++) {
30 p r i n t f ( ”%d\ t ” , nodes [ i ] [ j ] ) ;
31 }
32 p r i n t f ( ”\n” ) ;
33 }
34 }
35 void f p r i n t n o d e s ( ) {
36 int i ;
37 fp = fopen ( ” nodes . txt ” , ”w” ) ;
38 fp2 = fopen ( ” gnu nodes . txt ” , ”w” ) ;
39 for ( i =0; i<nnodes ; i++) {
40 f p r i n t f ( fp , ”%d %d %d N%d\n” , nodes [ i ] [ 0 ] , nodes [

i ] [ 1 ] , d i s tance , i ) ;
41 }
42 f p r i n t f ( fp2 , ” s e t term pdf s i z e 3 .00 in , 3 .00 in \n” ) ;
43 f p r i n t f ( fp2 , ” s e t output \ ’ nodes . pdf \ ’\n” ) ;
44 f p r i n t f ( fp2 , ” s e t s i z e r a t i o 1\n” ) ;

26



45 f p r i n t f ( fp2 , ” s e t p o i n t s i z e 0 .5\n” ) ;
46 f p r i n t f ( fp2 , ” s e t xrange [−10:%d ]\n” , x+10+d i s t ance ) ;
47 f p r i n t f ( fp2 , ” s e t yrange [−10:%d ]\n” , y+10+d i s t ance ) ;
48 f p r i n t f ( fp2 , ” p l o t \ ’ nodes . txt \ ’ us ing 1 : 2 : 3 t i ’

Coverage ’ with c i r c l e s , \ ’ nodes . txt \ ’ us ing (\ $1
+3) : 2 : 4 t i ’ ’ with l a b e l s f ont \”Verdana , 3\” , \ ’
nodes . txt \ ’ us ing 1 :2 t i ’ Nodes ’ with po in t s pt 7
l c rgb \” black \”” ) ;

49 f c l o s e ( fp ) ;
50 f c l o s e ( fp2 ) ;
51 }
52 void r e c o r d s c r i p s ( ) {
53 int i , j , s c r i p t o t a l =0, count ;
54 fp3 = fopen ( ” s c r i p s . txt ” , ”ab” ) ;
55 for ( i =0; i<nnodes ; i++) s c r i p t o t a l+=s c r i p [ i ] ;
56 f p r i n t f ( fp3 , ”# %d\n” , outputs ) ; outputs++;
57 for ( i =0; i<=s c r i p t o t a l ; i++) {
58 count =0;
59 for ( j =0; j<nnodes ; j++) {
60 i f ( s c r i p [ j ]== i ) count++;
61 }
62 i f ( count ) f p r i n t f ( fp3 , ”%d %d\n” , i , count ) ;
63 }
64 f p r i n t f ( fp3 , ”\n\n” ) ;
65 f c l o s e ( fp3 ) ;
66 }
67 void r e c o r d s o c i a l w e l f a r e ( ) {
68 int temp ;
69 double s o c i a l w e l f a r e ;
70 fp4 = fopen ( ” s o c i a l w e l f a r e . txt ” , ”ab” ) ;
71 s o c i a l w e l f a r e=n brokes ;
72 s o c i a l w e l f a r e =(1− s o c i a l w e l f a r e /nnodes ) ∗(

average gamma−s l i c e s ∗ average a lpha ) /(1−
a v e r a g e d e l t a ) ;

73 temp=n t r a n s a c t i o n s / output f requency ;
74 f p r i n t f ( fp4 , ”%d %l f \n” , temp , s o c i a l w e l f a r e ) ;
75 f c l o s e ( fp4 ) ;
76 }
77 void f p r i n t p a r a m e t e r s ( ) {
78 int i ;
79 fp5 = fopen ( ” parameters . txt ” , ”w” ) ;
80 f p r i n t f ( fp5 , ”Number o f nodes : %d\n” , nnodes ) ;
81 f p r i n t f ( fp5 , ”Length o f the x−coord ina te : %d\n” , x ) ;
82 f p r i n t f ( fp5 , ”Length o f the y−coord ina te : %d\n” , y ) ;
83 f p r i n t f ( fp5 , ”Coverage rad iu s o f a node ( 0 : un l imited ) :

%d\n” , d i s t ance ) ;
84 f p r i n t f ( fp5 , ”Number o f s l i c e s : %d\n” , s l i c e s ) ;
85 f p r i n t f ( fp5 , ”Average amount o f money : %d\n” ,m) ;

27



86 f p r i n t f ( fp5 , ”Number o f t r a n s a c t i o n s : %d\n” , t r a n s a c t i o n
) ;

87 f p r i n t f ( fp5 , ”Output f requency : %d\n” , output f requency )
;

88 f p r i n t f ( fp5 , ”Number o f types : %d\n” , types ) ;
89 for ( i =0; i<types ; i++) {
90 f p r i n t f ( fp5 , ”\n\ t (Type %d) \n” , i +1) ;
91 f p r i n t f ( fp5 , ” Ratio : %l f \n” , r a t i o [ i ] ) ;
92 f p r i n t f ( fp5 , ” Threshold : %d\n” , t t h r e s h o l d [ i ] ) ;
93 f p r i n t f ( fp5 , ”Alpha : %l f \n” , alpha [ i ] ) ;
94 f p r i n t f ( fp5 , ”Beta : %l f \n” , beta [ i ] ) ;
95 f p r i n t f ( fp5 , ”Gamma: %l f \n” ,gamma[ i ] ) ;
96 f p r i n t f ( fp5 , ” Delta : %l f \n” , d e l t a [ i ] ) ;
97 f p r i n t f ( fp5 , ”Rho : %l f \n” , rho [ i ] ) ;
98 }
99 f c l o s e ( fp5 ) ;

100 }

28


